Jun Li, PhD, is Professor and Chair for Research in the department of Computational Medicine and Bioinformatics and Professor of Human Genetics in the Medical School at the University of Michigan, Ann Arbor.

Matias D. Cattaneo, Ph.D., is Professor of Economics and Statistics in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor.

Prof. Cattaneo’s research interests include econometric theory, mathematical statistics, and applied econometrics, with focus on causal inference, program evaluation, high-dimensional problems and applied microeconomics. Most of his recent research relates to the development of new, improved semiparametric, nonparametric and high-dimensional inference procedures exhibiting demonstrable superior robustness properties with respect to tuning parameter and other implementation choices. His work is motivated by concrete empirical problems in social, biomedical and statistical sciences, covering a wide array of topics in settings related to treatment effects and policy evaluation, high-dimensional models, average derivatives and structural response functions, applied finance and applied decision theory, among others.

Ding Zhao, PhD, is Assistant Research Scientist in the department of Mechanical Engineering, College of Engineering with a secondary appointment in the Robotics Institute at The University of Michigan, Ann Arbor.

Dr. Zhao’s research interests include autonomous vehicles, intelligent/connected transportation, traffic safety, human-machine interaction, rare events analysis, dynamics and control, machine learning, and big data analysis

Sriram Chandrasekaran, PhD, is Assistant Professor of Biomedical Engineering in the College of Engineering at the University of Michigan, Ann Arbor.

Dr. Chandrasekaran’s Systems Biology lab develops computer models of biological processes to understand them holistically. Sriram is interested in deciphering how thousands of proteins work together at the microscopic level to orchestrate complex processes like embryonic development or cognition, and how this complex network breaks down in diseases like cancer. Systems biology software and algorithms developed by his lab are highlighted below and are available at http://www.sriramlab.org/software/.

– INDIGO (INferring Drug Interactions using chemoGenomics and Orthology) algorithm predicts how antibiotics prescribed in combinations will inhibit bacterial growth. INDIGO leverages genomics and drug-interaction data in the model organism – E. coli, to facilitate the discovery of effective combination therapies in less-studied pathogens, such as M. tuberculosis. (Ref: Chandrasekaran et al. Molecular Systems Biology 2016)

– GEMINI (Gene Expression and Metabolism Integrated for Network Inference) is a network curation tool. It allows rapid assessment of regulatory interactions predicted by high-throughput approaches by integrating them with a metabolic network (Ref: Chandrasekaran and Price, PloS Computational Biology 2013)

– ASTRIX (Analyzing Subsets of Transcriptional Regulators Influencing eXpression) uses gene expression data to identify regulatory interactions between transcription factors and their target genes. (Ref: Chandrasekaran et al. PNAS 2011)

– PROM (Probabilistic Regulation of Metabolism) enables the quantitative integration of regulatory and metabolic networks to build genome-scale integrated metabolic–regulatory models (Ref: Chandrasekaran and Price, PNAS 2010)

Yuekai Sun, PhD, is Assistant Professor in the department of Statistics at the University of Michigan, Ann Arbor.

Dr. Sun’s research is motivated by the challenges of analyzing massive data sets in data-driven science and engineering. I focus on statistical methodology for high-dimensional problems; i.e. problems where the number of unknown parameters is comparable to or exceeds the sample size. My recent work focuses on two problems that arise in learning from high-dimensional data (versus black-box approaches that do not yield insights into the underlying data-generation process). They are:

1. model selection and post-selection inference: discover the latent low-dimensional structure in high-dimensional data and perform inference on the learned structure;

2. distributed statistical computing: design scalable estimators and algorithms that avoid communication and minimize “passes” over the data.

A recurring theme in my work is exploiting the geometry of latent low-dimensional structure for statistical and computational gains. More broadly, I am interested in the geometric aspects of high-dimensional data analysis.

Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. He is developing methodologies for analyzing large-scale andhigh-dimensional datasets, with direct applications inobservational studies as well in genetics/genomics. His methodologic research is funded by various federal grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics.

Professor Subramanian is interested in a variety of stochastic modeling, decision and control theoretic, and applied probability questions concerned with networks. Examples include analysis of random graphs, analysis of processes like cascades on random graphs, network economics, analysis of e-commerce systems, mean-field games, network games, telecommunication networks, load-balancing in large server farms, and information assimilation, aggregation and flow in networks especially with strategic users.

Professor Gull works in the general area of computational condensed matter physics with a focus on the study of correlated electronic systems in and out of equilibrium. He is an expert on Monte Carlo methods for quantum systems and one of the developers of the diagrammatic ‘continuous-time’ quantum Monte Carlo methods. His recent work includes the study of the Hubbard model using large cluster dynamical mean field methods, the development of vertex function methods for optical (Raman and optical conductivity) probes, and the development of bold line diagrammatic algorithms for quantum impurities out of equilibrium. Professor Gull is involved in the development of open source computer programs for strongly correlated systems.

Jeremy Taylor, PhD, is the Pharmacia Research Professor of Biostatistics in the School of Public Health and Professor in the Department of Radiation Oncology in the School of Medicine at the University of Michigan, Ann Arbor. He is the director of the University of Michigan Cancer Center Biostatistics Unit and director of the Cancer/Biostatistics training program. He received his B.A. in Mathematics from Cambridge University and his Ph.D. in Statistics from UC Berkeley. He was on the faculty at UCLA from 1983 to 1998, when he moved to the University of Michigan. He has had visiting positions at the Medical Research Council, Cambridge, England; the University of Adelaide; INSERM, Bordeaux and CSIRO, Sydney, Australia. He is a previously winner of the Mortimer Spiegelman Award from the American Public Health Association and the Michael Fry Award from the Radiation Research Society. He has worked in various areas of Statistics and Biostatistics, including Box-Cox transformations, longitudinal and survival analysis, cure models, missing data, smoothing methods, clinical trial design, surrogate and auxiliary variables. He has been heavily involved in collaborations in the areas of radiation oncology, cancer research and bioinformatics.

I have broad interests and expertise in developing statistical methodology and applying it in biomedical research, particularly in cancer research. I have undertaken research in power transformations, longitudinal modeling, survival analysis particularly cure models, missing data methods, causal inference and in modeling radiation oncology related data. Recent interests, specifically related to cancer, are in statistical methods for genomic data, statistical methods for evaluating cancer biomarkers, surrogate endpoints, phase I trial design, statistical methods for personalized medicine and prognostic and predictive model validation. I strive to develop principled methods that will lead to valid interpretations of the complex data that is collected in biomedical research.

Johann Gagnon-Bartsch, PhD, is Assistant Professor of Statistics in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor.

Prof. Gagnon-Bartsch’s research currently focuses on the analysis of high-throughput biological data as well as other types of high-dimensional data. More specifically, he is working with collaborators on developing methods that can be used when the data are corrupted by systematic measurement errors of unknown origin, or when the data suffer from the effects of unobserved confounders. For example, gene expression data suffer from both systematic measurement errors of unknown origin (due to uncontrolled variations in laboratory conditions) and the effects of unobserved confounders (such as whether a patient had just eaten before a tissue sample was taken). They are developing methodology that is able to correct for these systematic errors using “negative controls.” Negative controls are variables that (1) are known to have no true association with the biological signal of interest, and (2) are corrupted by the systematic errors, just like the variables that are of interest. The negative controls allow us to learn about the structure of the errors, so that we may then remove the errors from the other variables.