goldsmith-2017

Bryan R. Goldsmith

By | | No Comments

Bryan R. Goldsmith, PhD, is Assistant Professor in the department of Chemical Engineering within the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Goldsmith’s research group utilizes first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., compressed sensing, kernel ridge regression, and subgroup discovery) to extract insights of catalysts and materials for sustainable chemical and energy production and to help create a platform for their design. For example, the group has exploited subgroup discovery as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data. ¬†They also have been using compressed sensing techniques to find physically meaningful models that predict the properties of perovskite (ABX3) compounds.

Prof. Goldsmith’s areas of research encompass energy research, materials science, nanotechnology, physics, and catalysis.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

 

yili-pic

Yi Li

By | | No Comments

Yi Li is a Professor of Biostatistics and Director of the Kidney Epidemiology and Cost Center. His current research interests are survival analysis, longitudinal and correlated data analysis, measurement error problems, spatial models and clinical trial designs. He is developing methodologies for analyzing large-scale andhigh-dimensional datasets, with direct applications inobservational studies as well in genetics/genomics. His methodologic research is funded by various federal grants starting from year 2003. Yi Li is actively involved in collaborative research in clinical trials and observational studies with researchers from the University of Michigan and Harvard University. The applications have included chronic kidney disease surveillance, organ transplantation, cancer preventive studies and cancer genomics.