Jon Zelner

By |

Jon Zelner, PhD, is Assistant Professor in the department of Epidemiology in the University of Michigan School of Public Health. Dr. Zelner holds a second appointment in the Center for Social Epidemiology and Population Health.

Dr. Zelner’s research is focused on using spatial analysis, social network analyisis and dynamic modeling to prevent infectious diseases, with a focus on tuberculosis and diarrheal disease. Jon is also interested in understanding how the social and biological causes of illness interact to generate observable patterns of disease in space and in social networks, across outcomes ranging from infection to mental illness.

 

A large spatial cluster of multi-drug resistant tuberculosis (MDR-TB) cases in Lima, Peru is highlighted in red. A key challenge in my work is understanding why these cases cluster in space: can social, spatial, and genetic data tell us where transmission is occurring and how to interrupt it?

A large spatial cluster of multi-drug resistant tuberculosis (MDR-TB) cases in Lima, Peru is highlighted in red. A key challenge in my work is understanding why these cases cluster in space: can social, spatial, and genetic data tell us where transmission is occurring and how to interrupt it?

 

 

Adriene Beltz

By |

The goal of my research is to leverage network analysis techniques to uncover how the brain mediates sex hormone influences on gendered behavior across the lifespan. Specifically, my data science research concerns the creation and application of person-specific connectivity analyses, such as unified structural equation models, to time series data; these are intensive longitudinal data, including functional neuroimages, daily diaries, and observations. I then use these data science methods to investigate the links between androgens (e.g., testosterone) and estradiol at key developmental periods, such as puberty, and behaviors that typically show sex differences, including aspects of cognition and psychopathology.

A network map showing the directed connections among 25 brain regions of interest in the resting state frontoparietal network for an individual; data were acquired via functional magnetic resonance imaging. Black lines depict connections common across individuals in the sample, gray lines depict connections specific to this individual, solid lines depict contemporaneous connections (occurring in the same volume), and dashed lines depict lagged connections (occurring between volumes).

A network map showing the directed connections among 25 brain regions of interest in the resting state frontoparietal network for an individual; data were acquired via functional magnetic resonance imaging. Black lines depict connections common across individuals in the sample, gray lines depict connections specific to this individual, solid lines depict contemporaneous connections (occurring in the same volume), and dashed lines depict lagged connections (occurring between volumes).

Elizabeth Bruch

By |

 

People’s behavior is often contingent on what other people are doing or have done. In dating and job markets, for example, each person’s choices limit what opportunities are available to others. A classic problem in sociology is explaining the relationship between individuals’ actions and larger-scale social patterns. My strategy is to use computer models of how people’s choices co-evolve with aspects of their environment—known as agent-based models (ABMs)—to determine what behavioral or demographic features are important for understanding social processes. I then use statistical models to assess to what degree these features exist in the real world. Substantively, most of my work examines the drivers of neighborhood segregation. More recently, I embarked on a study of how mate choice strategies shape (and are shaped by) dating, marriage, and affair markets.

With Fred Feinberg (UM Marketing and Statistics), I am also exploring how new data sources can be combined with choice models. The vast amounts of activity data from sources such as cell phones and the Internet make it possible to study human behavior with an unparalleled richness of detail. Such “big data” are interesting in large part because they are behavioral data that allow us to observe how people explore their environment, engage in novel or habitual behaviors, interact with others, and learn from past experiences. In ongoing work, we show how decision processes regarding mate choice can be extracted from online dating activity data.

 

 

Andrzej T Galecki

By |

Andrzej Galecki, MD, PhD, is Research Scientist in the department of Biostatistics, School of Public Health, and Research Professor in the Institute of Gerontology at the University of Michigan, Ann Arbor.

Hyun-soo Ahn

By |

Hyun-soo Ahn is an Associate Professor of Operations and Management Science at the Michigan Business School. He joined Michigan in 2003 from the department of Industrial Engineering and Operations Research at UC Berkeley. In his research, Hyun-soo develops and analyzes mathematical models related to supply chain management, dynamic pricing and revenue management, workforce agility, and resource allocation. He is also interested in modeling the customer’s behavior (such as subscription) and how it affects the firm’s profit. He has worked with more than 20 companies and his research has been funded by several organizations including National Science Foundation. His papers appear in leading journals in the field, including Operations Research, M&SOM, and Journal of Applied Probability.

At Ross, he teaches supply chain analytics and business statistics to MBAs, Exec. MBAs, MSCM, and BBAs. He has won a number of teaching awards voted by students, including 2012 Exec MBA teaching excellence award, 2012 Global MBA teaching excellence award, and 2006 BBA teaching excellence award.

Necmiye Ozay

By |

Necmiye Ozay, PhD, is Assistant Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Ozay and her team develop the scientific foundations and associated algorithmic tools for compactly representing and analyzing heterogeneous data streams from sensor/information-rich networked dynamical systems. They take a unified dynamics-based and data-driven approach for the design of passive and active monitors for anomaly detection in such systems. Dynamical models naturally capture temporal (i.e., causal) relations within data streams. Moreover, one can use hybrid and networked dynamical models to capture, respectively, logical relations and interactions between different data sources. They study structural properties of networks and dynamics to understand fundamental limitations of anomaly detection from data. By recasting information extraction problem as a networked hybrid system identification problem, they bring to bear tools from computer science, system and control theory and convex optimization to efficiently and rigorously analyze and organize information. The applications include diagnostics, anomaly and change detection in critical infrastructure such as building management systems, transportation and energy networks.

Robert J. Franzese Jr.

By |

Exploring properties of spatial-econometric methods for valid estimation of interdependent processes, i.e., estimation of spatially & spatiotemporally dynamic responses, primarily in political science and political economy applications. Specific applications have included international tax-competition and national tax & other economic policies, U.S. inter-state policy diffusion, the (possibly contagious) spread of intra- and inter-state conflict.

franzese-image-1024x576

 

Peter Lenk

By |

Peter Lenk, PhD, is Professor of Technology and Operations, Stephen M Ross School of Business, at the University of Michigan, Ann Arbor.

Prof. Lenk develops Bayesian models that disaggregate data to address individuals.  He also studies Bayesian nonparametric methods and currently consider shape constraints.  Prof. Lenk teaches and uses data mining methods such as recursive partition and neural networks.

Jeremy M G Taylor

By |

Jeremy Taylor, PhD, is the Pharmacia Research Professor of Biostatistics in the School of Public Health and Professor in the Department of Radiation Oncology in the School of Medicine at the University of Michigan, Ann Arbor. He is the director of the University of Michigan Cancer Center Biostatistics Unit and director of the Cancer/Biostatistics training program. He received his B.A. in Mathematics from Cambridge University and his Ph.D. in Statistics from UC Berkeley. He was on the faculty at UCLA from 1983 to 1998, when he moved to the University of Michigan. He has had visiting positions at the Medical Research Council, Cambridge, England; the University of Adelaide; INSERM, Bordeaux and CSIRO, Sydney, Australia. He is a previously winner of the Mortimer Spiegelman Award from the American Public Health Association and the Michael Fry Award from the Radiation Research Society. He has worked in various areas of Statistics and Biostatistics, including Box-Cox transformations, longitudinal and survival analysis, cure models, missing data, smoothing methods, clinical trial design, surrogate and auxiliary variables. He has been heavily involved in collaborations in the areas of radiation oncology, cancer research and bioinformatics.

I have broad interests and expertise in developing statistical methodology and applying it in biomedical research, particularly in cancer research. I have undertaken research  in power transformations, longitudinal modeling, survival analysis particularly cure models, missing data methods, causal inference and in modeling radiation oncology related data.  Recent interests, specifically related to cancer, are in statistical methods for genomic data, statistical methods for evaluating cancer biomarkers, surrogate endpoints, phase I trial design, statistical methods for personalized medicine and prognostic and predictive model validation.  I strive to develop principled methods that will lead to valid interpretations of the complex data that is collected in biomedical research.

Naisyin Wang

By |

Naisyin Wang, PhD, is Professor of Statistics, College of Literature, Science, and the Arts, at the University of Michigan, Ann Arbor.

Prof. Wang’s main research interests involve developing models and methodologies for complex biomedical data. She has developed approaches in information extraction from imperfect data due to measurement errors and incompleteness. Her other methodology developments include model-based mixture modeling, non- and semiparametric modeling of longitudinal, dynamic and high dimensional data. She developed approaches that first gauge the effects of measurement errors on non-linear mixed effects models and provided statistical methods to analyze such data. Most methods she has developed are so called semi-parametric based. One strength of such approaches is that one does not need to make certain structure assumptions about part of the model. This modeling strategy enables data integration from measurements collected from sources that might not be completely homogeneous. Her recently developed statistical methods focus on regularized approach and model building, selection and evaluation for high dimensional, dynamic or functional data.

Regularized time-varying ODE coefficients of SEI dynamic equation for the Canadian measles incidence data (Li, Zhu, Wang, 2015). Left panel: time-varying ODE coefficient curve that reflects both yearly and seasonal effects with the regularized yearly effect (red curve) embedded; right panel: regularized (red curve), non-regularized (blue) and two-year local constant (circles) estimates of yearly effects. The new regularized method shows that the yearly effect is relatively large in the early years and deceases gradually to a constant after 1958.

Regularized time-varying ODE coefficients of SEI dynamic equation for the Canadian measles incidence data (Li, Zhu, Wang, 2015). Left panel: time-varying ODE coefficient curve that reflects both yearly and seasonal effects with the regularized yearly effect (red curve) embedded; right panel: regularized (red curve), non-regularized (blue) and two-year local constant (circles) estimates of yearly effects. The new regularized method shows that the yearly effect is relatively large in the early years and deceases gradually to a constant after 1958.