Explore ARCExplore ARC

Michael Cafarella

By |

Michael Cafarella, PhD, is Associate Professor of Electrical Engineering and Computer Science, College of Engineering and Faculty Associate, Survey Research Center, Institute for Social Research, at the University of Michigan, Ann Arbor.

Prof. Cafarella’s research focuses on data management problems that arise from extreme diversity in large data collections. Big data is not just big in terms of bytes, but also type (e.g., a single hard disk likely contains relations, text, images, and spreadsheets) and structure (e.g., a large corpus of relational databases may have millions of unique schemas). As a result, certain long-held assumptions — e.g., that the database schema is always known before writing a query — are no longer useful guides for building data management systems. As a result, my work focuses heavily on information extraction and data mining methods that can either improve the quality of existing information or work in spite of lower-quality information.

A peek inside a Michigan data center! My students and I visit whenever I am teaching EECS485, which teaches many modern data-intensive methods and their application to the Web.

A peek inside a Michigan data center! My students and I visit whenever I am teaching EECS485, which teaches many modern data-intensive methods and their application to the Web.

Christopher Brooks

By |

The basis of my work is to make the often invisible traces created by interactions students have with learning technologies available to instructors, technology solutions, and students themselves. This often requires the creation of new novel educational technologies which are designed from the beginning with detailed tracking of user activities. Coupled with machine learning and data mining techniques (e.g. classification, regression, and clustering methods), clickstream data from these technologies is used to build predictive models of student success and to better understand how technology affords benefits in teaching and learning. I’m interested in broadly scaled teaching and learning through Massive Open Online Courses (MOOCs), how predictive models can be used to understand student success, and the analysis of educational discourse and student writing.

Muzammil M. Hussain

By |

Muzammil M. Hussain is an Assistant Professor of Communication Studies, and Faculty Associate in the Institute for Social Research at the University of Michigan. Dr. Hussain’s interdisciplinary research is at the intersections of global communication, comparative politics, and complexity studies. At Michigan, Professor Hussain teaches courses on research methods, digital politics, and global innovation. His published books include “Democracy’s Fourth Wave? Digital Media and the Arab Spring” (Oxford University Press, 2013), a cross-national comparative study of how digital media and information technologies have supported the opening-up of closed societies in the MENA, and “State Power 2.0: Authoritarian Entrenchment and Political Engagement Worldwide” (Ashgate Publishing, 2013), an international collection detailing how governments, both democracies and dictatorships, are working to close-down digital systems and environments around the world. He has authored numerous research articles, book chapters, and industry reports examining global ICT politics, innovation, and policy, including pieces in The Journal of Democracy, The Journal of International Affairs, The Brookings Institutions™ Issues in Technology and Innovation, The InterMedia Institute™s Development Research Series, International Studies Review, International Journal of Middle East Affairs, The Communication Review, Policy and Internet, and Journalism: Theory, Practice, and Criticism. His website is mmhussain.net, and he tweets from @m_m_hussain

Jerome P. Lynch

By |

Jerome P. Lynch, PhD, is Professor and Donald Malloure Department Chair of the Civil and Environmental Engineering Department in the College of Engineering in the University of Michigan, Ann Arbor.

Prof. Lynch’s group works at the forefront of deploying large-scale sensor networks to the built environment for monitoring and control of civil infrastructure systems including bridges, roads, rail networks, and pipelines; this research portfolio falls within the broader class of cyber-physical systems (CPS). To maximize the benefit of the massive data sets, they collect from operational infrastructure systems, and undertake research in the area of relational and NoSQL database systems, cloud-based analytics, and data visualization technologies. In addition, their algorithmic work is focused on the use of statistical signal processing, pattern classification, machine learning, and model inversion/updating techniques to automate the interrogation sensor data collected. The ultimate aim of Prof. Lynch’s work is to harness the full potential of data science to provide system users with real-time, actionable information obtained from the raw sensor data collected.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

Long Nguyen

By |

I am broadly interested in statistical inference, which is informally defined as the process of turning data into prediction and understanding. I like to work with richly structured data, such as those extracted from texts, images and other spatiotemporal signals. In recent years I have gravitated toward a field in statistics known as Bayesian nonparametrics, which provides a fertile and powerful mathematical framework for the development of many computational and statistical modeling ideas. My motivation for all this came originally from an early interest in machine learning, which continues to be a major source of research interest. A primary focus of my group’s research in machine learning to develop more effective inference algorithms using stochastic, variational and geometric viewpoints.

Atul Prakash

By |

Data analytics often need to be performed on sensitive data in domains such as healthcare, social networks, Internet of Things, etc. My research looks at design of operating systems and database mechanisms that help keep such data protected, while allowing analytics to be performed.

H. V. Jagadish

By |

H. V. Jagadish is Bernard A Galler Collegiate Professor of Electrical Engineering and Computer Science, and Distinguished Scientist at the Institute for Data Science, at the University of Michigan in Ann Arbor. Prior to 1999, he was Head of the Database Research Department at AT&T Labs, Florham Park, NJ.

Professor Jagadish is well known for his broad-ranging research on information management, and has approximately 200 major papers and 37 patents. He is a fellow of the ACM, “The First Society in Computing,” (since 2003) and serves on the board of the Computing Research Association (since 2009). He has been an Associate Editor for the ACM Transactions on Database Systems (1992-1995), Program Chair of the ACM SIGMOD annual conference (1996), Program Chair of the ISMB conference (2005), a trustee of the VLDB (Very Large DataBase) foundation (2004-2009), Founding Editor-in-Chief of the Proceedings of the VLDB Endowment (2008-2014), and Program Chair of the VLDB Conference (2014).Ê Since 2016, he is Editor of the Morgan & Claypool Synthesis Lecture Series on Data Management. Among his many awards, he won the ACM SIGMOD Contributions Award in 2013 and the David E Liddle Research Excellence Award (at the University of Michigan) in 2008.

 

Barzan Mozafari

Barzan Mozafari

By |

Building data-intensive systems that are more scalable, more robust, and more predictable. He draws from advanced statistical models to deliver practical database solutions to real-world problems. In particular, he adapts concepts and tools from applied statistics, optimization theory, and machine learning.