Joseph Ryan

By | | No Comments

Joe Ryan’s research and teaching build upon his direct practice experiences with child welfare and juvenile justice populations. Dr. Ryan is the Co-Director of the Child and Adolescent Data, an applied research center focused on using big data to drive policy and practice decisions in the field. Dr. Ryan is currently involved with several studies including a randomized clinical trial of recovery coaches for substance abusing parents in Illinois (AODA Demonstration), a foster care placement prevention study for young children in Michigan (MiFamily Demonstration), a Pay for Success (social impact bonds) study focused on high risk adolescents involved with the Illinois child welfare and juvenile justice system and a study of the educational experiences of youth in foster care (Kellogg Foundation Education and Equity). Dr. Ryan is committed to building strong University and State partnerships that utilize big data and data visualization tools to advance knowledge and address critical questions in the fields of child welfare and juvenile justice.


Brian Perron

By | | No Comments

Brian E. Perron, Ph.D., is an Associate Professor at the University of Michigan’s School of Social Work. Dr. Perron received his Ph.D. from Washington University in St. Louis and a specialization in Data Science from Johns Hopkins University. Dr. Perron has extensive experience in services research for persons with mental health and substance use disorders. His research (NCBI, Google Scholar) has been supported by the National Institutes of Health, Department of Veterans Affairs, and the State of Michigan. He recently published books on the topics of measurement (Oxford University Press) and social work practice (Sage Publications). Dr. Perron’s recent work focuses on helping community-based organizations more effectively use administrative data to improve service delivery and other business processes.This includes developing user-friendly and sustainable data management systems; using data visualizations to facilitate interpretation of data, especially for non-technical users; and building organizational capacity to promote data-driven decision making.