Explore ARCExplore ARC

Ding Zhao

By |

Ding Zhao, PhD, is Assistant Research Scientist in the department of Mechanical Engineering, College of Engineering with a secondary appointment in the Robotics Institute at The University of Michigan, Ann Arbor.

Dr. Zhao’s research interests include autonomous vehicles, intelligent/connected transportation, traffic safety, human-machine interaction, rare events analysis, dynamics and control, machine learning, and big data analysis

 

Suleyman Uludag

By |

My research spans security, privacy, and optimization of data collection particularly as applied to the Smart Grid, an augmented and enhanced paradigm for the conventional power grid. I am particularly interested in optimization approaches that take a notion of security and/or privacy into the modeling explicitly. At the intersection of the Intelligent Transportation Systems, Smart Grid, and Smart Cities, I am interested in data privacy and energy usage in smart parking lots. Protection of data and availability, especially under assault through a Denial-of-Service attacks, represents another dimension of my area of research interests. I am working on developing data privacy-aware bidding applications for the Smart Grid Demand Response systems without relying on trusted third parties. Finally, I am interested in educational and pedagogical research about teaching computer science, Smart Grid, cyber security, and data privacy.

This figure shows the data collection model I used in developing a practical and secure Machine-to-Machine data collection protocol for the Smart Grid.

This figure shows the data collection model I used in developing a practical and secure
Machine-to-Machine data collection protocol for the Smart Grid.

Trivellore E. Raghunathan

By |

Dr. Raghunathan’s primary research interest is in developing methods for dealing with missing data in sample surveys and in epidemiological studies. The methods are motivated from a Bayesian perspective but with desirable frequency or repeated sampling properties. The analysis of incomplete data from practical sample surveys poses additional problems due to extensive stratification, clustering of units and unequal probabilities of selection. The model-based approach provides a framework to incorporate all the relevant sampling design features in dealing with unit and item nonresponse in sample surveys. There are important computational challenges in implementing these methods in practical surveys. He has developed SAS based software, IVEware, for performing multiple imputation analysis and the analysis of complex survey data. Raghunathan’s other research interests include Bayesian methods, methods for small area estimation, combining information from multiple surveys, measurement error models, longitudinal data analysis, privacy, confidentiality and disclosure limitations and statistical methods for epidemiological studies. His applied interests include cardiovascular epidemiology, social epidemiology, health disparity, health care utilization, and social and economic sciences. Raghunathan is also involved in the Survey Methodology Program at the Institute for Social Research, a multidisciplinary team of sociologists, statisticians and psychologists, provides an opportunity to address methodological issues in: nonresponse, interviewer behavior and its impact on the results, response or measurement bias and errors, noncoverage, respondent cognition, privacy and confidentiality issues and data archiving. The Survey Methodology Program has a graduate program offering masters and doctoral degrees in survey methodology.

Jason Owen-Smith

By |

Professor Owen-Smith conducts research on the collective dynamics of large scale networks and their implications for scientific and technological innovation and surgical care. He is the executive director of the Institution for Research on Innovation and Science (IRIS, http://iris.isr.umich.edu).  IRIS is a national consortium of research universities who share data and support infrastructure designed to support research to understand, explain, and eventually improve the public value of academic research and research training.

One year snapshot of the collaboration network of a single large research university campus. Nodes are individuals employed on sponsored project grants, ties represent copayment on the same grant account in the same year. Ties are valued to reflect the number of grants in common. Node size is proportional to a simple measure of betweenness centrality and node color represents the results of a simple (walktrip) community finding algorithm. The image was created in Gephi.

One year snapshot of the collaboration network of a single large research university campus. Nodes are individuals employed on sponsored project grants, ties represent copayment on the same grant account in the same year. Ties are valued to reflect the number of grants in common. Node size is proportional to a simple measure of betweenness centrality and node color represents the results of a simple (walktrip) community finding algorithm. The image was created in Gephi.

Qiang Zhu

By |

Dr. Zhu’s group conducts research on various topics, ranging from foundational methodologies to challenging applications, in data science. In particular, the group has been investigating the fundamental issues and techniques for supporting various types of queries (including range queries, box queries, k-NN queries, and hybrid queries) on large datasets in a non-ordered discrete data space. A number of novel indexing and searching techniques that utilize the unique characteristics of an NDDS are developed. The group has also been studying the issues and techniques for storing and searching large scale k-mer datasets for various genome sequence analysis applications in bioinformatics. A virtual approximate store approach to supporting repetitive big data in genome sequence analyses and several new sequence analysis techniques are suggested. In addition, the group has been researching the challenges and methods for processing and optimizing a new type of so-called progressive queries that are formulated on the fly by a user in multiple steps. Such queries are widely used in many application domains including e-commerce, social media, business intelligence, and decision support. The other research topics that have been studied by the group include streaming data processing, self-management database, spatio-temporal data indexing, data privacy, Web information management, and vehicle drive-through wireless services.

Michael Elliott

By |

Michael Elliott is Professor of Biostatistics at the University of Michigan School of Public Health and Research Scientist at the Institute for Social Research. Dr. Elliott’s statistical research interests focus around the broad topic of “missing data,” including the design and analysis of sample surveys, casual and counterfactual inference, and latent variable models. He has worked closely with collaborators in injury research, pediatrics, women’s health, and the social determinants of physical and mental health. Dr. Elliott serves as an Associate Editor for the Journal of the American Statistical Association. He is currently serving as a co-investigator on the MIDAS-affiliated Reinventing Urban Transportation and Mobility project, working to develop methods to improve the representativeness of naturalistic driving data.

Pascal Van Hentenryck

By |

Pascal Van Hentenryck’s research is focused on artificial intelligence, data science, and optimization, with applications in mobility and transportation, energy systems, and computational social choice. He is currently leading the RITMO project, partly funded by MIDAS, which focuses on designing novel models of mobility, mathematical and algorithmic approaches to operate them optimally, and software architectures and data-privacy mechanisms to deploy them. The RITMO project is also in the process of deploying its technology in a number of significant case studies, with a particular focus on social equity.

Tracking Shuttle Bus Location & Ridership

Martin J. Strauss

By |

Martin J. Strauss, PhD, is Professor of Mathematics, College of Literature, Science, and the Arts and Professor of Electrical Engineering and Computer Science, College of Engineering, in the University of Michigan, Ann Arbor.

Prof. Strauss’ interests include randomized approximation algorithms for massive data sets, including, specifically, sublinear-time algorithms for sparse recovery in the Fourier and other domains.  Other interests include data privacy, including privacy of energy usage data.

H. V. Jagadish

By |

H. V. Jagadish is Bernard A Galler Collegiate Professor of Electrical Engineering and Computer Science, and Distinguished Scientist at the Institute for Data Science, at the University of Michigan in Ann Arbor. Prior to 1999, he was Head of the Database Research Department at AT&T Labs, Florham Park, NJ.

Professor Jagadish is well known for his broad-ranging research on information management, and has approximately 200 major papers and 37 patents. He is a fellow of the ACM, “The First Society in Computing,” (since 2003) and serves on the board of the Computing Research Association (since 2009). He has been an Associate Editor for the ACM Transactions on Database Systems (1992-1995), Program Chair of the ACM SIGMOD annual conference (1996), Program Chair of the ISMB conference (2005), a trustee of the VLDB (Very Large DataBase) foundation (2004-2009), Founding Editor-in-Chief of the Proceedings of the VLDB Endowment (2008-2014), and Program Chair of the VLDB Conference (2014).Ê Since 2016, he is Editor of the Morgan & Claypool Synthesis Lecture Series on Data Management. Among his many awards, he won the ACM SIGMOD Contributions Award in 2013 and the David E Liddle Research Excellence Award (at the University of Michigan) in 2008.