Explore ARCExplore ARC

Samuel K Handelman

By |

Samuel K Handelman, Ph.D., is Research Assistant Professor in the department of Internal Medicine, Gastroenterology, of Michigan Medicine at the University of Michigan, Ann Arbor. Prof. Handelman is focused on multi-omics approaches to drive precision/personalized-therapy and to predict population-level differences in the effectiveness of interventions. He tends to favor regression-style and hierarchical-clustering approaches, partially because he has a background in both statistics and in cladistics. His scientific monomania is for compensatory mechanisms and trade-offs in evolution, but he has a principled reason to focus on translational medicine: real understanding of these mechanisms goes all the way into the clinic. Anything less that clinical translation indicates that we don’t understand what drove the genetics of human populations.

Amal Alhosban

By |

Amal Alhosban, is an Assistant Professor of Computer Science at the University of Michigan Flint campus. She received her Ph.D. in Computer Science at Wayne State University in 2013. Her research focuses on Semantic Web and Fault Management and Wireless Network.

Bryan R. Goldsmith

By |

Bryan R. Goldsmith, PhD, is Assistant Professor in the department of Chemical Engineering within the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Goldsmith’s research group utilizes first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., compressed sensing, kernel ridge regression, and subgroup discovery) to extract insights of catalysts and materials for sustainable chemical and energy production and to help create a platform for their design. For example, the group has exploited subgroup discovery as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data.  They also have been using compressed sensing techniques to find physically meaningful models that predict the properties of perovskite (ABX3) compounds.

Prof. Goldsmith’s areas of research encompass energy research, materials science, nanotechnology, physics, and catalysis.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

 

V. G. Vinod Vydiswaran

By |

V.G.Vinod Vydiswaran, PhD, is Assistant Professor in the Department of Learning Health Sciences with a secondary appointment in the School of Information at the University of Michigan, Ann Arbor.

Dr. Vydiswaran’s research focuses on developing and applying text mining, natural language processing, and machine learning methodologies for extracting relevant information from health-related text corpora. This includes medically relevant information from clinical notes and biomedical literature, and studying the information quality and credibility of online health communication (via health forums and tweets). His previous work includes developing novel information retrieval models to assist clinical decision making, modeling information trustworthiness, and addressing the vocabulary gap between health professionals and  laypersons.

Kevin Dombkowski

By |

Kevin J. Dombkowski, DrPH., MS, is Research Professor with the Child Health Evaluation and Research (CHEAR) Center within the University of Michigan Department of Pediatrics.   He is a health services researcher working extensively with public health information systems and large administrative claims databases.  

Kevin’s primary research focus is conducting population-based interventions aimed at improving the health of children, especially those with chronic conditions.  Much of his work has focused on evaluating the feasibility and accuracy of using administrative claims data to identify children with chronic conditions by linking these data with clinical and public health systems.  Many of these projects have linked claims, immunization registries, newborn screening, birth records and death records to conduct population-based evaluations of health services.  He has also applied these approaches to assess the statewide prevalence of chronic conditions such as asthma, sickle cell disease, and inflammatory bowel disease in Michigan as well as other states.  Kevin is currently collaborating with Michigan State University on the design and development of the Flint Lead Exposure Registry (FLExR) information architecture.

Kevin’s research interests also include registry-based interventions to improve the timeliness of vaccinations through automated reminder and recall systems.  He has led numerous collaborations with the Michigan Department of Health and Human Services (MDHHS), including several CDC-funded initiatives using the Michigan Care Improvement Registry (MCIR).  Through this collaboration, Kevin tested a statewide intervention aimed at increasing influenza vaccination among children with chronic conditions during the 2009 influenza pandemic.  Kevin is currently collaborating with MDHHS to evaluate MCIR data quality as immunization providers across Michigan adopt real-time, bi-directional messaging between electronic health records and MCIR.   He is conducting a similar statewide evaluation as new messaging protocols are adopted by electronic laboratory systems for reporting blood lead testing results to MDHHS.

Rie Suzuki

By |

Dr. Suzuki is a behavioral scientist and has major research interests in examining and intervening mediational social determinants factors of health behaviors and health outcomes across lifespan. She analyzes the National Health Interview Survey, Medical Expenditure Panel Survey, National Health and Nutrition Examination Survey as well as the Flint regional medical records to understand the factors associating with poor health outcomes among people with disabilities including children and aging.

Mingyan Liu

By |

Mingyan Liu, PhD, is Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Liu’s research interest lies in optimal resource allocation, sequential decision theory, online and machine learning, performance modeling, analysis, and design of large-scale, decentralized, stochastic and networked systems, using tools including stochastic control, optimization, game theory and mechanism design. Her most recent research activities involve sequential learning, modeling and mining of large scale Internet measurement data concerning cyber security, and incentive mechanisms for inter-dependent security games. Within this context, her research group is actively working on the following directions.

1. Cyber security incident forecast. The goal is to predict an organization’s likelihood of having a cyber security incident in the near future using a variety of externally collected Internet measurement data, some of which capture active maliciousness (e.g., spam and phishing/malware activities) while others capture more latent factors (e.g., misconfiguration and mismanagement). While machine learning techniques have been extensively used for detection in the cyber security literature, using them for prediction has rarely been done. This is the first study on the prediction of broad categories of security incidents on an organizational level. Our work to date shows that with the right choice of feature set, highly accurate predictions can be achieved with a forecasting window of 6-12 months. Given the increasing amount of high profile security incidents (Target, Home Depot, JP Morgan Chase, and Anthem, just to name a few) and the amount of social and economic cost they inflict, this work will have a major impact on cyber security risk management.

2. Detect propagation in temporal data and its application to identifying phishing activities. Phishing activities propagate from one network to another in a highly regular fashion, a phenomenon known as fast-flux, though how the destination networks are chosen by the malicious campaign remains unknown. An interesting challenge arises as to whether one can use community detection methods to automatically extract those networks involved in a single phishing campaign; the ability to do so would be critical to forensic analysis. While there have been many results on detecting communities defined as subsets of relatively strongly connected entities, the phishing activity exhibits a unique propagating property that is better captured using an epidemic model. By using a combination of epidemic modeling and regression we can identify this type of propagating community with reasonable accuracy; we are working on alternative methods as well.

3. Data-driven modeling of organizational and end-user security posture. We are working to build models that accurately capture the cyber security postures of end-users as well as organizations, using large quantities of Internet measurement data. One domain is on how software vendors disclose security vulnerabilities in their products, how they deploy software upgrades and patches, and in turn, how end users install these patches; all these elements combined lead to a better understanding of the overall state of vulnerability of a given machine and how that relates to user behaviors. Another domain concerns the interconnectedness of today’s Internet which implies that what we see from one network is inevitably related to others. We use this connection to gain better insight into the conditions of not just a single network viewed in isolation, but multiple networks viewed together.

A predictive analytics approach to forecasting cyber security incidents. We start from Internet-scale measurement on the security postures of network entities. We also collect security incident reports to use as labels in a supervised learning framework. The collected data then goes through extensive processing and domain-specific feature extraction. Features are then used to train a classifier that generates predictions when we input new features, on the likelihood of a future incident for the entity associated with the input features. We are also actively seeking to understand the causal relationship among different features and the security interdependence among different network entities. Lastly, risk prediction helps us design better incentive mechanisms which is another facet of our research in this domain.

A predictive analytics approach to forecasting cyber security incidents. We start from Internet-scale measurement on the security postures of network entities. We also collect security incident reports to use as labels in a supervised learning framework. The collected data then goes through extensive processing and domain-specific feature extraction. Features are then used to train a classifier that generates predictions when we input new features, on the likelihood of a future incident for the entity associated with the input features. We are also actively seeking to understand the causal relationship among different features and the security interdependence among different network entities. Lastly, risk prediction helps us design better incentive mechanisms which is another facet of our research in this domain.

Michael Cafarella

By |

Michael Cafarella, PhD, is Associate Professor of Electrical Engineering and Computer Science, College of Engineering and Faculty Associate, Survey Research Center, Institute for Social Research, at the University of Michigan, Ann Arbor.

Prof. Cafarella’s research focuses on data management problems that arise from extreme diversity in large data collections. Big data is not just big in terms of bytes, but also type (e.g., a single hard disk likely contains relations, text, images, and spreadsheets) and structure (e.g., a large corpus of relational databases may have millions of unique schemas). As a result, certain long-held assumptions — e.g., that the database schema is always known before writing a query — are no longer useful guides for building data management systems. As a result, my work focuses heavily on information extraction and data mining methods that can either improve the quality of existing information or work in spite of lower-quality information.

A peek inside a Michigan data center! My students and I visit whenever I am teaching EECS485, which teaches many modern data-intensive methods and their application to the Web.

A peek inside a Michigan data center! My students and I visit whenever I am teaching EECS485, which teaches many modern data-intensive methods and their application to the Web.