Zhenke Wu

By |

Zhenke Wu is an Assistant Professor of Biostatistics, and Research Assistant Professor in Michigan Institute of Data Science (MIDAS). He received his Ph.D. in Biostatistics from the Johns Hopkins University in 2014 and then stayed at Hopkins for his postdoctoral training before joining the University of Michigan. Dr. Wu’s research focuses on the design and application of statistical methods that inform health decisions made by individuals, or precision medicine. The original methods and software developed by Dr. Wu are now used by investigators from research institutes such as CDC and Johns Hopkins, as well as site investigators from developing countries, e.g., Kenya, South Africa, Gambia, Mali, Zambia, Thailand and Bangladesh.

Danny Forger

By |

Daniel Forger is a Professor in the Department of Mathematics. He is devoted to understanding biological clocks. He uses techniques from many fields, including computer simulation, detailed mathematical modeling and mathematical analysis, to understand biological timekeeping. His research aims to generate predictions that can be experimentally verified.

Peter Adriaens

By |

Peter Adriaens, PhD, is Professor of Civil and Environmental Engineering, College of Engineering, Professor of Environment and Sustainability, School for Environment and Sustainability and Professor of Entrepreneurship, Stephen M Ross School of Business, at the University of Michigan, Ann Arbor.

Prof. Adriaens’ research focuses on the use of data science to uncover trends and features in a range of financial (‘fintech’) applications relevant to economic development and investments aimed at catalyzing sustainable growth, including:
1. Network mapping to query relations in financial networks using visualization techniques
2. Trend and features prediction of value capture and investment grade in startup business models, using machine learning, natural language processing, and decision tools
3. Asset risk pricing of stocks exposed to water risk in their supply chains, using statistical methods, and portfolio theory predictions
4. Financial risk modeling of multi-asset investment funds to drive low carbon economies, leveraging network mapping, and machine learning.

 

Structure of financial data-driven industry ecosystems following relational network mapping and network theory application.

Structure of financial data-driven industry ecosystems following relational network mapping and network theory application.

Necmiye Ozay

By |

Necmiye Ozay, PhD, is Assistant Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Ozay and her team develop the scientific foundations and associated algorithmic tools for compactly representing and analyzing heterogeneous data streams from sensor/information-rich networked dynamical systems. They take a unified dynamics-based and data-driven approach for the design of passive and active monitors for anomaly detection in such systems. Dynamical models naturally capture temporal (i.e., causal) relations within data streams. Moreover, one can use hybrid and networked dynamical models to capture, respectively, logical relations and interactions between different data sources. They study structural properties of networks and dynamics to understand fundamental limitations of anomaly detection from data. By recasting information extraction problem as a networked hybrid system identification problem, they bring to bear tools from computer science, system and control theory and convex optimization to efficiently and rigorously analyze and organize information. The applications include diagnostics, anomaly and change detection in critical infrastructure such as building management systems, transportation and energy networks.

Jingwen Hu

By |

Jingwen Hu, PhD, is Associate Research Scientist in the University of Michigan Transportation Research Institute (UMTRI) with a secondary appointment as Associate Research Scientist in Mechanical Engineering in the College of Engineering at the University of Michigan, Ann Arbor.

The primary goal of Prof. Hu’s research is to reduce the incidence of injuries and fatalities in motor-vehicle crashes and other injurious events using a multidisciplinary approach.  It involves 1) collecting and analyzing large-scale injury data to identify the injury problems and assess the performance of safety designs, 2) performing physical tests and computational simulations to investigate human impact responses, injury mechanisms, and injury tolerances for various body regions under field-relevant loading conditions, and 3) developing tools for large-scale computational simulations to explore the best solutions for reducing impact-induced injuries.

 

Charu Chandra

By |

My research interests are in developing inter-disciplinary knowledge in System Informatics, as the basis for study of complex system problems with the fusion of theory, computation, and application components adopted from Systems and Informatics fields. In this framework, a complex system such as the supply chain is posited as a System-of-Systems; i.e., a collection of individual business entities organized as a composite system with their resources and capabilities pooled to obtain an interoperable and synergistic system, possessing common and shared goals and objectives. Informatics facilitates coordination and integration in the system by processing and sharing information among supply chain entities for improved decision-making.

A common theme of my research is the basic foundation of universality of system and the realization that what makes it unique is its environment. This has enabled to categorize problems, designs, models, methodologies, and solution techniques at macro and micro levels and develop innovative solutions by coordinating these levels in an integrated environment.

My goal is to study the efficacy of the body of knowledge available in Systems Theory, Information Science, Artificial Intelligence & Knowledge Management, Management Science, Industrial Engineering and Operations Research fields; applied uniquely to issues and problems of complex systems in the manufacturing and service sectors.

Theoretical work investigated by me in this research thrust relates to:

  • Developing Generalized System Taxonomies and Ontologies for complex systems management.
  • Experimenting with Problem Taxonomies for design and modeling efficiencies in complex system networks.
  • Developing methodologies, frameworks and reference models for complex systems management.
  • Computation and application development focused on developing algorithms and software development for:
    • Supply chain information system and knowledge library using Web-based technology as a dissemination tool.
    • Integration with Enterprise Resource Planning modules in SAP software.
    • Supply chain management problem-solving through application of problem specific simulation and optimization.

My research has extended to application domains in healthcare, textiles, automotive, and defense sectors. Problems and issues addressed relate to health care management, operationalizing of sustainability, energy conservation, global logistics management, mega-disaster recovery, humanitarian needs management, and entrepreneurship management.

Currently, my application focus is on expanding the breadth and depth of inquiry in the healthcare domain. Among the topics being investigated are: (1) the organization and structure of health care enterprises; and (2) operations and strategies that relate to management of critical success factors, such as costs, quality, innovation and technology adoption by health care providers. Two significant topics that I have chosen to study with regard to care for elderly patients suffering from chronic congestive heart failure and hypertension are: (1) the design of patient-centered health care delivery to improve quality of care; and (2) managing enhanced care costs due to readmission of these patients.

Data science applications: Real-time data processing in supply chains, Knowledge portals for decision-making in supply chains, information sharing for optimizing patient-centered healthcare delivery

Luis E. Ortiz

By |

Luis Ortiz, PhD, is Assistant Professor of Computer and Information Science, College of Engineering and Computer Science, The University of Michigan, Dearborn

The study of large complex systems of structured strategic interaction, such as economic, social, biological, financial, or large computer networks, provides substantial opportunities for fundamental computational and scientific contributions. Luis’ research focuses on problems emerging from the study of systems involving the interaction of a large number of “entities,” which is my way of abstractly and generally capturing individuals, institutions, corporations, biological organisms, or even the individual chemical components of which they are made (e.g., proteins and DNA). Current technology has facilitated the collection and public availability of vasts amounts of data, particularly capturing system behavior at fine levels of granularity. In Luis’ group, they study behavioral data of strategic nature at big data levels. One of their main objectives is to develop computational tools for data science, and in particular learning large-population models from such big sources of behavioral data that we can later use to study, analyze, predict and alter future system behavior at a variety of scales, and thus improve the overall efficiency of real-world complex systems (e.g., the smart grid, social and political networks, independent security and defense systems, and microfinance markets, to name a few).

Jie Shen

By |

Jie Shen, PhD, is Professor of Computer and Information Science at the University of Michigan, Dearborn.

Prof. Shen’s research interests are in the digital diagnosis of material damage based on sensors, computational science and numerical analysis with large-scale 3D computed tomography data: (1) Establishment of a multi-resolution transformation rule of material defects. (2) Design of an accurate digital diagnosis method for material damage. (3) Reconstruction of defects in material domains from X-ray CT data . (4) Parallel computation of materials damage. His team also conducted a series of studies for improving the quality of large-scale laser scanning data in reverse engineering and industrial inspection: (1) Detection and removal of non-isolated Outlier Data Clusters (2) Accurate correction of surface data noise of polygonal meshes (3) Denoising of two-dimensional geometric discontinuities.

Processing and Analysis of 3D Large-Scale Engineering Data

Processing and Analysis of 3D Large-Scale Engineering Data

Christopher Brooks

By |

The basis of my work is to make the often invisible traces created by interactions students have with learning technologies available to instructors, technology solutions, and students themselves. This often requires the creation of new novel educational technologies which are designed from the beginning with detailed tracking of user activities. Coupled with machine learning and data mining techniques (e.g. classification, regression, and clustering methods), clickstream data from these technologies is used to build predictive models of student success and to better understand how technology affords benefits in teaching and learning. I’m interested in broadly scaled teaching and learning through Massive Open Online Courses (MOOCs), how predictive models can be used to understand student success, and the analysis of educational discourse and student writing.