Brian Min

By | | No Comments

Brian Min, PhD, is Associate Professor of Political Science in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor. Prof. Min holds secondary appointments as Research Associate Professor in the Center for Political Studies and the Institute for Social Research.

Prof. Min studies the political economy of development with an emphasis on distributive politics, public goods provision, and energy politics. His research uses high-resolution satellite imagery to study the distribution of electricity across and within the developing world. He has collaborated closely with the World Bank using satellite technologies and statistical algorithms to monitor electricity access in India and Africa, including the creation of a web platform to visualize twenty years of change in light output for every village in India (http://nightlights.io).

 

min-nightlights

Joseph Ryan

By | | No Comments

Joe Ryan’s research and teaching build upon his direct practice experiences with child welfare and juvenile justice populations. Dr. Ryan is the Co-Director of the Child and Adolescent Data, an applied research center focused on using big data to drive policy and practice decisions in the field. Dr. Ryan is currently involved with several studies including a randomized clinical trial of recovery coaches for substance abusing parents in Illinois (AODA Demonstration), a foster care placement prevention study for young children in Michigan (MiFamily Demonstration), a Pay for Success (social impact bonds) study focused on high risk adolescents involved with the Illinois child welfare and juvenile justice system and a study of the educational experiences of youth in foster care (Kellogg Foundation Education and Equity). Dr. Ryan is committed to building strong University and State partnerships that utilize big data and data visualization tools to advance knowledge and address critical questions in the fields of child welfare and juvenile justice.

Michael Cafarella

By | | No Comments

My research focuses on data management problems that arise from extreme diversity in large data collections. Big data is not just big in terms of bytes, but also type (e.g., a single hard disk likely contains relations, text, images, and spreadsheets) and structure (e.g., a large corpus of relational databases may have millions of unique schemas). As a result, certain long-held assumptions — e.g., that the database schema is always known before writing a query — are no longer useful guides for building data management systems. As a result, my work focuses heavily on information extraction and data mining methods that can either improve the quality of existing information or work in spite of lower-quality information.

A peek inside a Michigan data center! My students and I visit whenever I am teaching EECS485, which teaches many modern data-intensive methods and their application to the Web.

A peek inside a Michigan data center! My students and I visit whenever I am teaching EECS485, which teaches many modern data-intensive methods and their application to the Web.

Steven J. Katz

By | | No Comments

Dr. Katz’s research addresses cancer treatment communication, decision-making, and quality of care. His work aims to examine the dynamics of how precision medicine presents itself in the exam room via provider and patient communication and shared decision-making. Dr. Katz leads the Cancer Surveillance and Outcomes Research Team (CanSORT), an interdisciplinary research program centered at the University of Michigan and focused on population and intervention studies of the quality of care and outcomes of cancer detection and treatment in diverse populations.  Dr. Katz and CanSORT have been collaborating with Surveillance, Epidemiology, and End Results (SEER) cancer registries since 2002 to study breast cancer treatment decision making at the population level. We obtain patient clinical and demographic information from SEER and combine this with surveys of patients and physicians to create comprehensive data sets that enable us to study testing and treatment trends and the challenges of individualizing treatments for breast cancer patients. In 2015 we added a new dimension to our research by partnering with evaluative testing firms to obtain tumor genomic and germline genetic test results for over 30,000 breast and ovarian cancer patients in the states of California and Georgia. We are also pursuing insurance claims data to assist with our analysis of physician network effects.

Steven Katz, MD discusses BRCA and multigene sequence testing at the labs of Ambry Genetics.

Steven Katz, MD discusses BRCA and multigene sequence testing at the labs of Ambry Genetics.

Xuefeng (Chris) Liu

By | | No Comments

Dr. Liu has a broad research interest in the development of statistical models and techniques to address critical issues in health and nursing sciences, computational processing of Big Data in clinical Informatics and Genomics, statistical modeling and assessment of risk factors (e.g. hypertension, diabetes, central obesity, smoking) for adverse cardiovascular and renal outcomes and maternal and child health. His expertise in statistics includes, but is not limited to, repeated measures models with missing data, multilevel models, latent variable models, and Bayesian and computational statistics. Dr. Liu has led and co-led several NIH-funded projects on the quality of care for hypertensive patients.

Viswanath Nagarajan

By | | No Comments

My research is on the design of efficient (approximation) algorithms for combinatorial optimization problems. I work on deterministic optimization models, as well as richer models that handle uncertainty in data: stochastic, robust and online optimization. I am also interested in algorithms for scheduling and energy-efficiency in data centers.

Ivo D. Dinov

By | | No Comments

Dr. Ivo Dinov directs the Statistics Online Computational Resource (SOCR), co-directs the multi-institutional Probability Distributome Project, and is an associate director for education of the Michigan Institute for Data Science (MIDAS).

Dr. Dinov is an expert in mathematical modeling, statistical analysis, computational processing and visualization of Big Data. He is involved in longitudinal morphometric studies of human development (e.g., Autism, Schizophrenia), maturation (e.g., depression, pain) and aging (e.g., Alzheimer’s and Parkinson’s diseases). Dr. Dinov is developing, validating and disseminating novel technology-enhanced pedagogical approaches for scientific education and active learning.

Analyzing Big observational data including thousands of Parkinson's disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.

Analyzing Big observational data including thousands of Parkinson’s disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.