Romesh Saigal

By |

Professor Saigal has held faculty positions at the Haas School of Business, Berkeley and the department of Industrial Engineering and Management Sciences at Northwestern University, has been a researcher at the Bell Telephone Laboratories and numerous short term visiting positions. He currently teaches courses in Financial Engineering. In the recent past he taught courses in optimization, and Management Science. His current research involves data based studies of operational problems in the areas of Finance, Transportation, Renewable Energy and Healthcare, with an emphasis on the management and pricing of risks. This involves the use of data analytics, optimization, stochastic processes and financial engineering tools. His earlier research involved theoretical investigation into interior point methods, large scale optimization and software development for mathematical programming. He is an author of two books on optimization and large set of publications in top refereed journals. He has been an associate editor of Management Science and is a member of SIAM, AMS and AAAS. He has served as the Director of the interdisciplinary Financial Engineering Program and as the Director of Interdisciplinary Professional Programs (now Integrative Design + Systems) at the College of Engineering.

Zhenke Wu

By |

Zhenke Wu is an Assistant Professor of Biostatistics, and Research Assistant Professor in Michigan Institute of Data Science (MIDAS). He received his Ph.D. in Biostatistics from the Johns Hopkins University in 2014 and then stayed at Hopkins for his postdoctoral training before joining the University of Michigan. Dr. Wu’s research focuses on the design and application of statistical methods that inform health decisions made by individuals, or precision medicine. The original methods and software developed by Dr. Wu are now used by investigators from research institutes such as CDC and Johns Hopkins, as well as site investigators from developing countries, e.g., Kenya, South Africa, Gambia, Mali, Zambia, Thailand and Bangladesh.

Bhramar Mukherjee

By |

Bhramar Mukherjee is  a Professor in the Department of Biostatistics, joining the department in Fall, 2006. Bhramar is also a Professor in the Department of Epidemiology. Bhramar completed her Ph.D. in 2001 from Purdue University. Bhramar’s principal research interests lie in Bayesian methods in epidemiology and studies of gene-environment interaction. She is also interested in modeling missingness in exposure, categorical data models, Bayesian nonparametrics, and the general area of statistical inference under outcome/exposure dependent sampling schemes. Bhramar’s methodological research is funded by NSF and NIH.   Bhramar is involved as a co-investigator in several R01s led by faculty in Internal Medicine, Epidemiology and Environment Health sciences at UM. Her collaborative interests focus on genetic and environmental epidemiology, ranging from investigating the genetic architecture of colorectal cancer in relation to environmental exposures to studies of air pollution on pediatric Asthma events in Detroit. She is actively engaged in Global Health Research.

Ding Zhao

By |

Ding Zhao, PhD, is Assistant Research Scientist in the department of Mechanical Engineering, College of Engineering with a secondary appointment in the Robotics Institute at The University of Michigan, Ann Arbor.

Dr. Zhao’s research interests include autonomous vehicles, intelligent/connected transportation, traffic safety, human-machine interaction, rare events analysis, dynamics and control, machine learning, and big data analysis

 

Peter Adriaens

By |

My research focus is on the development and application of machine learning tools to large scale financial and unstructured (textual) data to extract, quantify and predict risk profiles and investment grade rating of private and public companies.  Example datasets include social media and financial aggregators such as Bloomberg, Pitchbook, and Privco.

Matthew Kay

By |

Matthew Kay, PhD, is Assistant Professor of Information, School of Information and Assistant Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Kay’s research includes work on communicating uncertainty, usable statistics, and personal informatics. People are increasingly exposed to sensing and prediction in their daily lives (“how many steps did I take today?”, “how long until my bus shows up?”, “how much do I weigh?”). Uncertainty is both inherent to these systems and usually poorly communicated. To build understandable data presentations, we must study how people interpret their data and what goals they have for it, which informs the way that we should communicate results from our models, which in turn determines what models we must use in the first place. Prof. Kay tackles these problems using a multi-faceted approach, including qualitative and quantitative analysis of behavior, building and evaluating interactive systems, and designing and testing visualization techniques. His work draws on approaches from human-computer interaction, information visualization, and statistics to build information visualizations that people can more easily understand along with the models to back those visualizations.

 

Jeffrey S. McCullough

By |

Jeffrey S. McCullough, PhD, is Associate Professor in the department of Health Management and Policy in the School of Public Health at the University of Michigan, Ann Arbor.

Prof. McCullough’s research focuses on technology and innovation in health care with an emphasis on information technology (IT), pharmaceuticals, and empirical methods.  Many of his studies explored the effect of electronic health record (EHR) systems on health care quality and productivity. While the short-run gains from health IT adoption may be modest, these technologies form the foundation for a health information infrastructure. As scientists are just beginning to understand how to harness and apply medical information, this problem is complicated by the sheer complexity of medical care, the heterogeneity across patients, and the importance of treatment selection. His current work draws on methods from both machine learning and econometrics to address these issues. Current pharmaceutical studies examine the roles of consumer heterogeneity and learning about the value of products as well as the effect of direct-to-consumer advertising on health.

The marginal effects of health IT on mortality by diagnosis and deciles of severity. We study the affect of hospitals' electronic health record (EHR) systems on patient outcomes. While we observe no benefits for the average patient, mortality falls significantly for high-risk patients in all EHR-sensitive conditions. These patterns, combined findings from other analyses, suggest that EHR systems may be more effective at supporting care coordination and information management than at rules-based clinical decision support. McCullough, Parente, and Town, "Health information technology and patient outcomes: the role of information and labor coordination." RAND Journal of Economics, Vol. 47, no. 1 (Spring 2016).

The marginal effects of health IT on mortality by diagnosis and deciles of severity. We study the affect of hospitals’ electronic health record (EHR) systems on patient outcomes. While we observe no benefits for the average patient, mortality falls significantly for high-risk patients in all EHR-sensitive conditions. These patterns, combined findings from other analyses, suggest that EHR systems may be more effective at supporting care coordination and information management than at rules-based clinical decision support. McCullough, Parente, and Town, “Health information technology and patient outcomes: the role of information and labor coordination.” RAND Journal of Economics, Vol. 47, no. 1 (Spring 2016).

Andrew Grogan-Kaylor

By |

My core intellectual interest is the way in which parenting behaviors, like the use of physical punishment, or parental expressions of emotional warmth, have an effect on child outcomes like aggression, antisocial behavior, anxiety and depression, and how these dynamics play out across contexts, neighborhoods, and cultures.  A lot of my work is done with international samples. In my work I use statistical models, like multilevel models and some econometric models, and software like Stata, R, HLM and ArcGIS, to examine things like growth and change over time, or community, school or parent effects on children and families.  I have emerging interests in text-mining and natural language processing.

Visualization of multilevel modeling using High School and Beyond data set.

Visualization of multilevel modeling using High School and Beyond data set.

Nils G. Walter

By |

Nils G. Walter, PhD, is the Francis S. Collins Collegiate Professor of Chemistry, Biophysics and Biological Chemistry, College of Literature, Science, and the Arts and Professor of Biological Chemistry, Medical School, at the University of Michigan, Ann Arbor.

Nature and Nanotechnology likewise employ nanoscale machines that self-assemble into structures of complex architecture and functionality.  Fluorescence microscopy offers a non-invasive tool to probe and ultimately dissect and control these nanoassemblies in real-time.  In particular, single molecule fluorescence resonance energy transfer (smFRET) allows us to measure distances at the 2-8 nm scale, whereas complementary super-resolution localization techniques based on Gaussian fitting of imaged point spread functions (PSFs) measure distances in the 10 nm and longer range.  In terms of Big Data Analysis, we have developed a method for the intracellular single molecule, high-resolution localization and counting (iSHiRLoC) of microRNAs (miRNAs), a large group of gene silencers with profound roles in our body, from stem cell development to cancer.  Microinjected, singly-fluorophore labeled, functional miRNAs are tracked at super-resolution within individual diffusing particles.  Observed mobility and mRNA dependent assembly changes suggest the existence of two kinetically distinct assembly processes.  We are currently feeding these data into a single molecule systems biology pipeline to bring into focus the unifying molecular mechanism of such a ubiquitous gene regulatory pathway.  In addition, we are using cluster analysis of smFRET time traces to show that large RNA processing machines such as single spliceosomes – responsible for the accurate removal of all intervening sequences (introns) in pre-messenger RNAs – are working as biased Brownian ratchet machines.  On the opposite end of the application spectrum, we utilize smFRET and super-resolution fluorescence microscopy to monitor enhanced enzyme cascades and nanorobots engineered to self-assemble and function on DNA origami.

Artistic depiction of the SiMREPS platform we are building for the direct single molecule counting of miRNA biomarkers in crude biofluids (Johnson-Buck, A. et al. Kinetic fingerprinting to identify and count single nucleic acids. Nat Biotechnol 33, 730-732 (2015)).

Artistic depiction of the SiMREPS platform we are building for the direct single molecule counting of miRNA biomarkers in crude biofluids (Johnson-Buck, A. et al. Kinetic fingerprinting to identify and count single nucleic acids. Nat Biotechnol 33, 730-732 (2015)).