Ding Zhao

By |

Ding Zhao, PhD, is Assistant Research Scientist in the department of Mechanical Engineering, College of Engineering with a secondary appointment in the Robotics Institute at The University of Michigan, Ann Arbor.

Dr. Zhao’s research interests include autonomous vehicles, intelligent/connected transportation, traffic safety, human-machine interaction, rare events analysis, dynamics and control, machine learning, and big data analysis

 

Heather B. Mayes

By |

Heather B. Mayes, PhD, is Assistant Professor of Chemical Engineering in the College of Engineering at The University of Michigan, Ann Arbor.

The Team Mayes and Blue focuses on discovering fundamental structure-function relationships that govern how proteins and sugars interact in applications from renewable materials to human health. We use atomistic simulation (molecular mechanics and quantum mechanics) to determine the fundamental, microscopic interactions that determine macroscopically observable phenomena. The resulting mechanistic understanding is harnessed to engineer more efficient proteins to meet biotechnology needs, whether to break down biomass to create feedstock for renewable fuels and chemicals, or create prebiotic carbohydrates.

Molecular simulations allow us to discover fundamental mechanistic processes, such as the overall energies associated with carbohydrate procession into an enzyme (A), and the individual structural components governing the mechanism, such as electrostatic interactions as a function of position (B). These simulations create rich data sets from which we can determine these structure-function relationships and use them to make predictions of how mutations to proteins can change function, thus enabling rational enzyme design.

 

Zeina Mneimneh

By |

Dr. Zeina Mneimneh is Assistant Research Scientist in the University of Michigan Survey Research Center.

Her research focuses on the use of social media and neighborhood contextual information to study social and health science topics and involves a collaboration between Michigan and Georgetown University.

Bryan R. Goldsmith

By |

Bryan R. Goldsmith, PhD, is Assistant Professor in the department of Chemical Engineering within the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Goldsmith’s research group utilizes first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., compressed sensing, kernel ridge regression, and subgroup discovery) to extract insights of catalysts and materials for sustainable chemical and energy production and to help create a platform for their design. For example, the group has exploited subgroup discovery as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data.  They also have been using compressed sensing techniques to find physically meaningful models that predict the properties of perovskite (ABX3) compounds.

Prof. Goldsmith’s areas of research encompass energy research, materials science, nanotechnology, physics, and catalysis.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

 

Sandun Perera

By |

Professor Perera is Assistant Professor of Operations and Supply Chain Management in the School of Management at the University of Michigan, Flint

Professor Perera’s research broadly focuses on Supply Chain Management, Revenue Management, the Operations-Finance interface, the Operations-Marketing interface, Healthcare Operations Management and Financial Engineering. He is particularly interested in stochastic and deterministic inventory problems under general cost structures, government (central bank) operations in the foreign exchange market, consumer behavior under social learning, optimal delivery strategies for various supply chain networks, and asymmetric information in fads models. His recent research in healthcare operations management, revenue management, stochastic inventory management and financial engineering are mainly data and algorithm oriented.

Edward G. Happ

By |

Edward G. Happ is an Executive Fellow at the University of Michigan School of Information, where he is teaching and conducting research. He is also the Co-Founder and former Chairman of NetHope (www.nethope.org), a U.S. based consortium of 50+ leading international relief, development and conservation nonprofits focused on information and communications technology (ICT) and collaboration.

 

Peter Adriaens

By |

Prof. Adriaens’ research focuses on the use of data science to uncover trends and features in a range of financial (‘fintech’) applications relevant to economic development and investments aimed at catalyzing sustainable growth, including:
1. Network mapping to query relations in financial networks using visualization techniques
2. Trend and features prediction of value capture and investment grade in startup business models, using machine learning, natural language processing, and decision tools
3. Asset risk pricing of stocks exposed to water risk in their supply chains, using statistical methods, and portfolio theory predictions
4. Financial risk modeling of multi-asset investment funds to drive low carbon economies, leveraging network mapping, and machine learning.

 

Structure of financial data-driven industry ecosystems following relational network mapping and network theory application.

Structure of financial data-driven industry ecosystems following relational network mapping and network theory application.

V.G.Vinod Vydiswaran

By |

V.G.Vinod Vydiswaran, PhD, is Assistant Professor in the Department of Learning Health Sciences with a secondary appointment in the School of Information at the University of Michigan, Ann Arbor.

Dr. Vydiswaran’s research focuses on developing and applying text mining, natural language processing, and machine learning methodologies for extracting relevant information from health-related text corpora. This includes medically relevant information from clinical notes and biomedical literature, and studying the information quality and credibility of online health communication (via health forums and tweets). His previous work includes developing novel information retrieval models to assist clinical decision making, modeling information trustworthiness, and addressing the vocabulary gap between health professionals and  laypersons.