Eric Michielssen

By |

Eric Michielssen, PhD, is Professor of Electrical Engineering and Computer Science, Director of the Michigan Institute for Computational Discovery and Engineering, and Associate Vice President for Advanced Research Computing. His research interests include all aspects of theoretical, applied, and computational electromagnetics, with emphasis on the development of fast (primarily) integral-equation-based techniques for analyzing electromagnetic phenomena. His group studies fast multipole methods for analyzing static and high frequency electronic and optical devices, fast direct solvers for scattering analysis, and butterfly algorithms for compressing matrices that arise in the integral equation solution of large-scale electromagnetic problems. Furthermore, the group works on plane-wave-time-domain algorithms that extend fast multipole concepts to the time domain, and develop time-domain versions of pre-corrected FFT/adaptive integral methods.  Collectively, these algorithms allow the integral equation analysis of time-harmonic and transient electromagnetic phenomena in large-scale linear and nonlinear surface scatterers, antennas, and circuits.  Recently, the group developed powerful Calderon multiplicative preconditioners for accelerating time domain integral equation solvers applied to the analysis of multiscale phenomena, and used the above analysis techniques to develop new closed-loop and multi-objective optimization tools for synthesizing electromagnetic devices, as well as to assist in uncertainty quantification studies relating to electromagnetic compatibility and bioelectromagnetic problems.

Stephanie Teasley

By |

Dr. Teasley’s research has focused on issues of collaboration and learning, looking specifically at how sociotechnical systems can be used to support effective collaborative processes and successful learning outcomes. As Director of the LED lab, she leads learning analytics-based research to investigate how instructional technologies and digital media are used to innovate teaching, learning, and collaboration. The LED Lab is committed to providing a significant contribution to scholarship about learning at Michigan and in the broader field as well, by building an empirical evidentiary base for the design and support of technology rich learning environments.

Jieping Ye

By |

Jieping Ye, PhD, is Associate Professor of Computational Medicine and Bioinformatics in the Medical School at the University of Michigan, Ann Arbor.

The Ye Lab has been conducting fundamental research in machine learning and data mining, developing computational methods for biomedical data analysis, and building informatics software. We have developed novel machine learning algorithms for feature extraction from high-dimensional data, sparse learning, multi-task learning, transfer learning, active learning, multi-label classification, and matrix completion. We have developed the SLEP (Sparse Learning with Efficient Projections) package, which includes implementations of large-scale sparse learning models, and the MALSAR (Multi-tAsk Learning via StructurAl Regularization) package, which includes implementations of state-of-the-art multi-task learning models. SLEP achieves state-of-the-art performance for many sparse learning models, and it has become one of the most popular sparse learning software packages. With close collaboration with researchers at the biomedical field, we have successfully applied these methods for analyzing biomedical data, including clinical image data and genotype data.

Jeremy M G Taylor

By |

Jeremy Taylor, PhD, is the Pharmacia Research Professor of Biostatistics in the School of Public Health and Professor in the Department of Radiation Oncology in the School of Medicine at the University of Michigan, Ann Arbor. He is the director of the University of Michigan Cancer Center Biostatistics Unit and director of the Cancer/Biostatistics training program. He received his B.A. in Mathematics from Cambridge University and his Ph.D. in Statistics from UC Berkeley. He was on the faculty at UCLA from 1983 to 1998, when he moved to the University of Michigan. He has had visiting positions at the Medical Research Council, Cambridge, England; the University of Adelaide; INSERM, Bordeaux and CSIRO, Sydney, Australia. He is a previously winner of the Mortimer Spiegelman Award from the American Public Health Association and the Michael Fry Award from the Radiation Research Society. He has worked in various areas of Statistics and Biostatistics, including Box-Cox transformations, longitudinal and survival analysis, cure models, missing data, smoothing methods, clinical trial design, surrogate and auxiliary variables. He has been heavily involved in collaborations in the areas of radiation oncology, cancer research and bioinformatics.

I have broad interests and expertise in developing statistical methodology and applying it in biomedical research, particularly in cancer research. I have undertaken research  in power transformations, longitudinal modeling, survival analysis particularly cure models, missing data methods, causal inference and in modeling radiation oncology related data.  Recent interests, specifically related to cancer, are in statistical methods for genomic data, statistical methods for evaluating cancer biomarkers, surrogate endpoints, phase I trial design, statistical methods for personalized medicine and prognostic and predictive model validation.  I strive to develop principled methods that will lead to valid interpretations of the complex data that is collected in biomedical research.

Carol Flannagan

Carol Flannagan

By |

As faculty member within the University of Michigan Transportation Research Institute, Dr. Flannagan currently serves as Director of the Center for Management of Information for Safe and Sustainable Transportation (CMISST) and Head of the Statistics and Methods Group for the CDC-funded UM Injury Center. Dr. Flannagan has over 20 years of experience conducting data analysis and research on injury risk related to motor vehicle crashes and was responsible for the development of a model of injury outcome that allows side-by-side comparison of public health, vehicle, roadway and post-crash interventions (utmost.umtri.umich.edu). She has also applied statistical methods to understanding and evaluating benefits of crash-avoidance technologies, including evaluating safety in automated vehicles, and works to develop novel applications of statistics to analysis of driving data. Her current work with CMISST involves the fusion and analysis of large state-level crash databases, which are useful in analyzing the effect of a variety of countermeasures on crash involvement and injury risk. In addition, her group is working to make data available to researchers to expand the community of experts in transportation data analysis.

Kevin Ward

By |

Kevin Ward, MD, is Professor of Emergency Medicine in the department of Emergency Medicine in the University of Michigan Medical School.

Dr. Ward is the director of the Michigan Center for Integrative Research in Critical Care (MCIRCC) and a new Medical School-wide innovation program, Fast Forward Medical Innovation. He has successfully developed monitors for measuring tissue oxygenation, volume status, redox potential, coagulation monitoring, image and physiologic signal analysis, and other physiologic parameters leading teams of engineers, basic scientists, and clinicians, bridging the translation gap.

Kerby Shedden

By |

Kerby Shedden has broad interests involving applied statistics, data science and computing with data.  Through his work directing the data science consulting service he has worked in a wide variety of application domains including numerous areas within health science, social science, and transportation research.  A current major focus is development of software tools that exploit high performance computing infrastructure for statistical analysis of health records, and sensor data from vehicles and road networks.

Rada Mihalcea

By |

The Language and Information Technologies (LIT) lab, directed by Rada Mihalcea, conducts research in natural language processing, information retrieval, and applied machine learning. The group specifically focuses on projects concerned with text semantics (word/text similarity, large semantic networks), behavior analysis (multilingual opinion analysis, multimodal models for deception detection, emotion recognition, alertness detection, stress/anxiety detection, analysis of counseling speech), big data for cross-cultural analysis (geotagging, understanding cross-cultural differences and worldview), educational applications (pedagogical search engines, automatic short answer grading, conversational technologies for student advising).

Several of the projects in the LIT lab are interdisciplinary, acknowledging the fact that language can be used to deepen our understanding in many different fields, such as psychology, sociology, history, and others.  Some of the ongoing projects in the lab are collaborations with psychologists and sociologists, and target a rich modeling of human behavior through language analysis, seeking answers to questions such as “what are the core values of a culture?” and “are there differences in how different groups of people perceive the surrounding world?” The lab is also actively working on multimodal projects to track and understand human behavior, where language analysis is complemented with other channels such as facial expressions, gestures, and physiological signals.

Of interest, Prof. Mihalcea was quoted in a story about sexism and today’s virtual assistants such as Amazon’s Alexa, Apple’s Siri, and Microsoft’s CortanaRefinery29.

The LIT lab conducts research that brings together techniques for natural language understanding, multimodal processing, and social media analysis.

The LIT lab conducts research that brings together techniques for natural language understanding, multimodal processing, and social media analysis.