Michielssen

Eric Michielssen

By | | No Comments

Eric Michielssen is a Professor of Electrical Engineering and Computer Science, Director of the Michigan Institute for Computational Discovery and Engineering, and Associate Vice President for Advanced Research Computing. His research interests include all aspects of theoretical, applied, and computational electromagnetics, with emphasis on the development of fast (primarily) integral-equation-based techniques for analyzing electromagnetic phenomena. His group studies fast multipole methods for analyzing static and high frequency electronic and optical devices, fast direct solvers for scattering analysis, and butterfly algorithms for compressing matrices that arise in the integral equation solution of large-scale electromagnetic problems. Furthermore, the group works on plane-wave-time-domain algorithms that extend fast multipole concepts to the time domain, and develop time-domain versions of pre-corrected FFT/adaptive integral methods.  Collectively, these algorithms allow the integral equation analysis of time-harmonic and transient electromagnetic phenomena in large-scale linear and nonlinear surface scatterers, antennas, and circuits.  Recently, the group developed powerful Calderon multiplicative preconditioners for accelerating time domain integral equation solvers applied to the analysis of multiscale phenomena, and used the above analysis techniques to develop new closed-loop and multi-objective optimization tools for synthesizing electromagnetic devices, as well as to assist in uncertainty quantification studies relating to electromagnetic compatibility and bioelectromagnetic problems.

stephaniet

Stephanie Teasley

By | | No Comments

Dr. Teasley’s research has focused on issues of collaboration and learning, looking specifically at how sociotechnical systems can be used to support effective collaborative processes and successful learning outcomes. As Director of the LED lab, she leads learning analytics-based research to investigate how instructional technologies and digital media are used to innovate teaching, learning, and collaboration. The LED Lab is committed to providing a significant contribution to scholarship about learning at Michigan and in the broader field as well, by building an empirical evidentiary base for the design and support of technology rich learning environments.

jieping-ye-small

Jieping Ye

By | | No Comments

The Ye Lab has been conducting fundamental research in machine learning and data mining, developing computational methods for biomedical data analysis, and building informatics software. We have developed novel machine learning algorithms for feature extraction from high-dimensional data, sparse learning, multi-task learning, transfer learning, active learning, multi-label classification, and matrix completion. We have developed the SLEP (Sparse Learning with Efficient Projections) package, which includes implementations of large-scale sparse learning models, and the MALSAR (Multi-tAsk Learning via StructurAl Regularization) package, which includes implementations of state-of-the-art multi-task learning models. SLEP achieves state-of-the-art performance for many sparse learning models, and it has become one of the most popular sparse learning software packages. With close collaboration with researchers at the biomedical field, we have successfully applied these methods for analyzing biomedical data, including clinical image data and genotype data.

Cancer Center, April Harris

Jeremy M G Taylor

By | | No Comments

I have broad interests and expertise in developing statistical methodology and applying it in biomedical research, particularly in cancer research. I have undertaken research  in power transformations, longitudinal modeling, survival analysis particularly cure models, missing data methods, causal inference and in modeling radiation oncology related data.  Recent interests, specifically related to cancer, are in statistical methods for genomic data, statistical methods for evaluating cancer biomarkers, surrogate endpoints, phase I trial design, statistical methods for personalized medicine and prognostic and predictive model validation.  I strive to develop principled methods that will lead to valid interpretations of the complex data that is collected in biomedical research.