Explore ARCExplore ARC

Sebastian Zoellner

By |

Sebastian Zöllner is a Professor of Biostatistics. He also holds an appointment in the Department of Psychiatry. Dr. Zöllner joined the University of Michigan after a postdoctoral fellowship in the Department of Human Genetics at the University of Chicago. His research effort is divided between generating new methods in statistical genetics and analyzing data. The general thrust of his work is problems from human genetics, evolutionary biology and statistical population biology.

Honglak Lee

By |

Dr. Lee’s research interests lie in machine learning and its applications to artificial intelligence. In particular, he focuses on deep learning and representation learning, which aims to learn an abstract representation of the data by a hierarchical and compositional structure. His research also spans over related topics, such as graphical models, optimization, and large-scale learning. Specific application areas include computer vision, audio recognition, robotics, text modeling, and healthcare.

Laura Balzano

By |

Professor Balzano and her students investigate problems in statistical signal processing and optimization, particularly dealing with large and messy data. Her applications typically have missing, corrupted, and uncalibrated data as well as heterogeneous data in terms of sensors, sensor quality, and scale in both time and space. Her theoretical interests involve classes of non-convex problems that include Principal Components Analysis (or the Singular Value Decomposition) and many interesting variants such as PCA with sparse or structured principal components, orthogonality and non-negativity constraints, nonlinear variants such as low-dimensional algebraic variety models, and even categorical data or human preference data. She concentrates on fast gradient methods and related optimization methods that are scalable to real-time operation and massive data. Her work provides algorithmic and statistical guarantees for these algorithms on the aforementioned non-convex problems, and she focuses carefully on assumptions that are realistic for the relevant applications. She has worked in the areas of online algorithms, real-time computer vision, compressed sensing and matrix completion, network inference, and sensor networks.

Real-time dynamic background tracking and foreground separation. At time t = 101, the virtual camera slightly pans to right 20 pixels. We show how GRASTA quickly adapts to the new subspace by t = 125. The first row is the original video frame; the middle row is the tracked background; the bottom row is the separated foreground.

Real-time dynamic background tracking and foreground separation. At time t = 101, the virtual camera slightly pans to right 20 pixels. We show how GRASTA quickly adapts to the new subspace by t = 125. The first row is the original video frame; the middle row is the tracked background; the bottom row is the separated foreground.

Kerby Shedden

By |

Kerby Shedden has broad interests involving applied statistics, data science and computing with data.  Through his work directing the data science consulting service he has worked in a wide variety of application domains including numerous areas within health science, social science, and transportation research.  A current major focus is development of software tools that exploit high performance computing infrastructure for statistical analysis of health records, and sensor data from vehicles and road networks.

Ivo D. Dinov

By |

Dr. Ivo Dinov directs the Statistics Online Computational Resource (SOCR), co-directs the multi-institutional Probability Distributome Project, and is an associate director for education of the Michigan Institute for Data Science (MIDAS).

Dr. Dinov is an expert in mathematical modeling, statistical analysis, computational processing and visualization of Big Data. He is involved in longitudinal morphometric studies of human development (e.g., Autism, Schizophrenia), maturation (e.g., depression, pain) and aging (e.g., Alzheimer’s and Parkinson’s diseases). Dr. Dinov is developing, validating and disseminating novel technology-enhanced pedagogical approaches for scientific education and active learning.

Analyzing Big observational data including thousands of Parkinson's disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.

Analyzing Big observational data including thousands of Parkinson’s disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.

Rich Gonzalez

By |

My research makes use of state-of-the-art statistical learning and exploratory tools to answer questions at the interface of biology and behavioral science.