(734) 615-5290
Applications: Civil Infrastructure Asset Management, Risk Analysis, Structural Health Monitoring, Urban Informatics Methodologies: Classification, Data Analytics, Machine Learning, Model Updating Relevant Projects: USDOT RITA Program National Science Foundation Cyber-Physical Systems Program Office of Naval Research Connections:

Michigan Department of Transportation

Union Pacific Railroad

National Center for Research in Earthquake Engineering (Taiwan)

Jerome Lynch

Professor, Civil and Environmental Engineering

Affiliation(s):

Electrical Engineering and Computer Science

Our group works at the forefront of deploying large-scale sensor networks to the built environment for monitoring and control of civil infrastructure systems including bridges, roads, rail networks, and pipelines; this research portfolio falls within the broader class of cyber-physical systems (CPS). To maximize the benefit of the massive data sets we collect from operational infrastructure systems, we undertake research in the area of relational and NoSQL database systems, cloud-based analytics, and data visualization technologies. In addition, our algorithmic work is focused on the use of statistical signal processing, pattern classification, machine learning, and model inversion/updating techniques to automate the interrogation sensor data collected. The ultimate aim of our work is to harness the full potential of data science to provide system users with real-time, actionable information obtained from the raw sensor data collected.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.