(734) 936-1189
Applications: Clinical Risk Adjustment, Health Care, Pharmaceutical Advertising, Precision Medicine, Social Media Methodologies: Econometrics, Heterogeneous Treatment Effects, Machine Learning Connections: Workshop on Health IT and Economics

Jeffrey S. McCullough

Associate Professor, Health Management and Policy, School of Public Health

My research focuses on technology and innovation in health care with an emphasis on information technology (IT), pharmaceuticals, and empirical methods.  Many of my studies explored the effect of electronic health record (EHR) systems on health care quality and productivity. While the short-run gains from health IT adoption may be modest, these technologies form the foundation for a health information infrastructure. We are just beginning to understand how to harness and apply medical information. This problem is complicated by the sheer complexity of medical care, the heterogeneity across patients, and the importance of treatment selection. My current work draws on methods from both machine learning and econometrics to address these issues. Current pharmaceutical studies examine the roles of consumer heterogeneity and learning about the value of products as well as the effect of direct-to-consumer advertising on health.

The marginal effects of health IT on mortality by diagnosis and deciles of severity. We study the affect of hospitals' electronic health record (EHR) systems on patient outcomes. While we observe no benefits for the average patient, mortality falls significantly for high-risk patients in all EHR-sensitive conditions. These patterns, combined findings from other analyses, suggest that EHR systems may be more effective at supporting care coordination and information management than at rules-based clinical decision support. McCullough, Parente, and Town, "Health information technology and patient outcomes: the role of information and labor coordination." RAND Journal of Economics, Vol. 47, no. 1 (Spring 2016).

The marginal effects of health IT on mortality by diagnosis and deciles of severity. We study the affect of hospitals’ electronic health record (EHR) systems on patient outcomes. While we observe no benefits for the average patient, mortality falls significantly for high-risk patients in all EHR-sensitive conditions. These patterns, combined findings from other analyses, suggest that EHR systems may be more effective at supporting care coordination and information management than at rules-based clinical decision support. McCullough, Parente, and Town, “Health information technology and patient outcomes: the role of information and labor coordination.” RAND Journal of Economics, Vol. 47, no. 1 (Spring 2016).