Explore ARCExplore ARC

Matthew Shapiro

By |

Prof. Shapiro is the Lawrence R. Klein Collegiate Professor of Economics, College of Literature, Science, and the Arts and Research Professor, Survey Research Center, Institute for Social Research, at the University of Michigan, Ann Arbor.

Prof. Shapiro’s general area of research is macroeconomics. He has studied investment and capital utilization, business-cycle fluctuations, consumption and saving, financial markets, monetary policy, fiscal policy, and time-series econometrics. Among his current research interests are consumption, saving, retirement, and portfolio choices of households, the effects of tax policy on investment, using surveys in macroeconomics, and improving the quality of national economic statistics.

Zeina Mneimneh

By |

Dr. Zeina Mneimneh is Assistant Research Scientist in the University of Michigan Survey Research Center.

Her research focuses on the use of social media and neighborhood contextual information to study social and health science topics and involves a collaboration between Michigan and Georgetown University.

Trivellore E. Raghunathan

By |

Dr. Raghunathan’s primary research interest is in developing methods for dealing with missing data in sample surveys and in epidemiological studies. The methods are motivated from a Bayesian perspective but with desirable frequency or repeated sampling properties. The analysis of incomplete data from practical sample surveys poses additional problems due to extensive stratification, clustering of units and unequal probabilities of selection. The model-based approach provides a framework to incorporate all the relevant sampling design features in dealing with unit and item nonresponse in sample surveys. There are important computational challenges in implementing these methods in practical surveys. He has developed SAS based software, IVEware, for performing multiple imputation analysis and the analysis of complex survey data. Raghunathan’s other research interests include Bayesian methods, methods for small area estimation, combining information from multiple surveys, measurement error models, longitudinal data analysis, privacy, confidentiality and disclosure limitations and statistical methods for epidemiological studies. His applied interests include cardiovascular epidemiology, social epidemiology, health disparity, health care utilization, and social and economic sciences. Raghunathan is also involved in the Survey Methodology Program at the Institute for Social Research, a multidisciplinary team of sociologists, statisticians and psychologists, provides an opportunity to address methodological issues in: nonresponse, interviewer behavior and its impact on the results, response or measurement bias and errors, noncoverage, respondent cognition, privacy and confidentiality issues and data archiving. The Survey Methodology Program has a graduate program offering masters and doctoral degrees in survey methodology.

Jason Owen-Smith

By |

Professor Owen-Smith conducts research on the collective dynamics of large scale networks and their implications for scientific and technological innovation and surgical care. He is the executive director of the Institution for Research on Innovation and Science (IRIS, http://iris.isr.umich.edu).  IRIS is a national consortium of research universities who share data and support infrastructure designed to support research to understand, explain, and eventually improve the public value of academic research and research training.

One year snapshot of the collaboration network of a single large research university campus. Nodes are individuals employed on sponsored project grants, ties represent copayment on the same grant account in the same year. Ties are valued to reflect the number of grants in common. Node size is proportional to a simple measure of betweenness centrality and node color represents the results of a simple (walktrip) community finding algorithm. The image was created in Gephi.

One year snapshot of the collaboration network of a single large research university campus. Nodes are individuals employed on sponsored project grants, ties represent copayment on the same grant account in the same year. Ties are valued to reflect the number of grants in common. Node size is proportional to a simple measure of betweenness centrality and node color represents the results of a simple (walktrip) community finding algorithm. The image was created in Gephi.

Michael Elliott

By |

Michael Elliott is Professor of Biostatistics at the University of Michigan School of Public Health and Research Scientist at the Institute for Social Research. Dr. Elliott’s statistical research interests focus around the broad topic of “missing data,” including the design and analysis of sample surveys, casual and counterfactual inference, and latent variable models. He has worked closely with collaborators in injury research, pediatrics, women’s health, and the social determinants of physical and mental health. Dr. Elliott serves as an Associate Editor for the Journal of the American Statistical Association. He is currently serving as a co-investigator on the MIDAS-affiliated Reinventing Urban Transportation and Mobility project, working to develop methods to improve the representativeness of naturalistic driving data.