Elizabeth Bruch

By | | No Comments

 

People’s behavior is often contingent on what other people are doing or have done. In dating and job markets, for example, each person’s choices limit what opportunities are available to others. A classic problem in sociology is explaining the relationship between individuals’ actions and larger-scale social patterns. My strategy is to use computer models of how people’s choices co-evolve with aspects of their environment—known as agent-based models (ABMs)—to determine what behavioral or demographic features are important for understanding social processes. I then use statistical models to assess to what degree these features exist in the real world. Substantively, most of my work examines the drivers of neighborhood segregation. More recently, I embarked on a study of how mate choice strategies shape (and are shaped by) dating, marriage, and affair markets.

With Fred Feinberg (UM Marketing and Statistics), I am also exploring how new data sources can be combined with choice models. The vast amounts of activity data from sources such as cell phones and the Internet make it possible to study human behavior with an unparalleled richness of detail. Such “big data” are interesting in large part because they are behavioral data that allow us to observe how people explore their environment, engage in novel or habitual behaviors, interact with others, and learn from past experiences. In ongoing work, we show how decision processes regarding mate choice can be extracted from online dating activity data.

 

 

Jason Owen-Smith

By | | No Comments

Our data architecture combines naturally-occurring data from research grant inputs with scientific outputs including publications, citations, dissertations, and patents, as well as with biographic data on researchers scraped from the web and in databases. These data integrate with STAR METRICS administrative data on grant purchases and employment, which can in turn be linked to Longitudinal Employer-Household Dynamics (LEHD) Census data enabling individuals to be traced as they move across employers and start businesses. These data are then linked using cutting edge disambiguation/name-entity resolution, web scraping and entity extraction. This IRIS methodology is advancing the underlying computational sciences and creating more useful data for broader applications.

One year snapshot of the collaboration network of a single large research university campus. Nodes are individuals employed on sponsored project grants, ties represent copayment on the same grant account in the same year. Ties are valued to reflect the number of grants in common. Node size is proportional to a simple measure of betweenness centrality and node color represents the results of a simple (walktrip) community finding algorithm. The image was created in Gephi.

One year snapshot of the collaboration network of a single large research university campus. Nodes are individuals employed on sponsored project grants, ties represent copayment on the same grant account in the same year. Ties are valued to reflect the number of grants in common. Node size is proportional to a simple measure of betweenness centrality and node color represents the results of a simple (walktrip) community finding algorithm. The image was created in Gephi.

Gerald Davis

By | | No Comments

My research is broadly concerned with corporate governance and the effects of finance on society. Recent writings examine how ideas about corporate social responsibility have evolved to meet changes in the structures and geographic footprint of multinational corporations; whether “shareholder capitalism” is still a viable model for economic development; how income inequality in an economy is related to corporate size and structure; why theories about organizations do (or do not) progress; how architecture shapes social networks and innovation in organizations; why stock markets spread to some countries and not others; and whether there exist viable organizational alternatives to shareholder-owned corporations in the United States. Recent publications are available at http://webuser.bus.umich.edu/gfdavis/articles.htm.

Ties Among the Fortune 1000 Corporate Boards

Ties Among the Fortune 1000 Corporate Boards