Halil Bisgin

By |

My research is focused on a wide range of topics from computational social sciences to bioinformatics where I do pattern recognition, perform data analysis, and build prediction models. At the core of my effort, there lie machine learning methods by which I have been trying to address problems related to social networks, opinion mining, biomarker discovery, pharmacovigilance, drug repositioning, security analytics, genomics, food contamination, and concussion recovery. I’m particularly interested in and eager to collaborate on cyber security aspect of social media analytics that includes but not limited to misinformation, bots, and fake news. In addition, I’m still pursuing opportunities in bioinformatics, especially about next generation sequencing analysis that can be also leveraged for phenotype predictions by using machine learning methods.

A typical pipeline for developing and evaluating a prediction models to identify malicious Android mobile apps in the market

Amal Alhosban

By |

Amal Alhosban, is an Associate Professor of Computer Science at the University of Michigan Flint campus. She received her Ph.D. in Computer Science at Wayne State University in 2013. Her research focuses on Semantic Web and Fault Management and Wireless Network.

Murali Mani

By |

Murali Mani, PhD, is Professor of Computer Science at the University of Michigan, Flint.

The significant research problems Prof. Mani is investigating include the following: big data management, big data analytics and visualization, provenance, query processing of encrypted data, event stream processing, XML stream processing. data modeling using XML schemas, and effective computer science education. In addition, he has worked in industry on clickstream analytics (2015), and on web search engines (1999-2000). Prof. Mani’s significant publications are listed on DBLP at: http://dblp.uni-trier.de/pers/hd/m/Mani:Murali.

9.9.2020 MIDAS Faculty Research Pitch Video.

MIDAS Faculty Research Pitch, Fall 2021

Illustrating how our SMART system effectively integrates big data processing and data visualization to enable big data visualization. The left side shows a typical data visualization scenario, where the different analysts are using their different visualization systems. These visualization systems can provide interactive visualizations but cannot handle the complexities of big data. They interact with a distributed data processing system that can handle the complexities of big data. The SMART system improves the user experience by carefully sending additional data to the visualization system in response to a request from an analyst so that future visualization requests can be answered directly by the visualization system without accessing the data processing system.

Illustrating how our SMART system effectively integrates big data processing and data visualization to enable big data visualization. The left side shows a typical data visualization scenario, where the different analysts are using their different visualization systems. These visualization systems can provide interactive visualizations but cannot handle the complexities of big data. They interact with a distributed data processing system that can handle the complexities of big data. The SMART system improves the user experience by carefully sending additional data to the visualization system in response to a request from an analyst so that future visualization requests can be answered directly by the visualization system without accessing the data processing system.

 

Mark Allison

By |

Mark Allison, PhD, is Associate Professor of Computer Science in the department of Computer Science, Engineering and Physics at the University of Michigan-Flint.

Dr. Allison’s research pertains to the autonomic control of complex cyberphysical systems utilizing software models as first class artifacts. Domains being explored are microgrid energy management and unmanned aerial vehicles (UAVs) in swarms.