Omid Dehzangi

By | | No Comments

Wearable health technology is drawing significant attention for good reasons. The pervasive nature of such systems providing ubiquitous access to the continuous personalized data will transform the way people interact with each other and their environment. The resulting information extracted from these systems will enable emerging applications in healthcare, wellness, emergency response, fitness monitoring, elderly care support, long-term preventive chronic care, assistive care, smart environments, sports, gaming, and entertainment which create many new research opportunities and transform researches from various disciplines into data science which is the methodological terminology for data collection, data management, data analysis, and data visualization. Despite the ground-breaking potentials, there are a number of interesting challenges in order to design and develop wearable medical embedded systems. Due to limited available resources in wearable processing architectures, power-efficiency is demanded to allow unobtrusive and long-term operation of the hardware. Also, the data-intensive nature of continuous health monitoring requires efficient signal processing and data analytic algorithms for real-time, scalable, reliable, accurate, and secure extraction of relevant information from an overwhelmingly large amount of data. Therefore, extensive research in their design, development, and assessment is necessary. Embedded Processing Platform Design The majority of my work concentrates on designing wearable embedded processing platforms in order to shift the conventional paradigms from hospital-centric healthcare with episodic and reactive focus on diseases to patient-centric and home-based healthcare as an alternative segment which demands outstanding specialized design in terms of hardware design, software development, signal processing and uncertainty reduction, data analysis, predictive modeling and information extraction. The objective is to reduce the costs and improve the effectiveness of healthcare by proactive early monitoring, diagnosis, and treatment of diseases (i.e. preventive) as shown in Figure 1.

dehzangi-image

Embedded processing platform in healthcare

zhu-small

Qiang Zhu

By | | No Comments

Dr. Zhu’s group conducts research on various topics, ranging from foundational methodologies to challenging applications, in data science. In particular, the group has been investigating the fundamental issues and techniques for supporting various types of queries (including range queries, box queries, k-NN queries, and hybrid queries) on large datasets in a non-ordered discrete data space. A number of novel indexing and searching techniques that utilize the unique characteristics of an NDDS are developed. The group has also been studying the issues and techniques for storing and searching large scale k-mer datasets for various genome sequence analysis applications in bioinformatics. A virtual approximate store approach to supporting repetitive big data in genome sequence analyses and several new sequence analysis techniques are suggested. In addition, the group has been researching the challenges and methods for processing and optimizing a new type of so-called progressive queries that are formulated on the fly by a user in multiple steps. Such queries are widely used in many application domains including e-commerce, social media, business intelligence, and decision support. The other research topics that have been studied by the group include streaming data processing, self-management database, spatio-temporal data indexing, data privacy, Web information management, and vehicle drive-through wireless services.

zhu-image

Using a data-partitioning based index tree (the ND-tree) to find sequences that are similar (with distance 1) to a given query sequence from a large sequence database in a Non-ordered Discrete Data Space (NDDS).

ortiz-small

Luis E. Ortiz

By | | No Comments

The study of large complex systems of structured strategic interaction, such as economic, social, biological, financial, or large computer networks, provides substantial opportunities for fundamental computational and scientific contributions. My research focuses on problems emerging from the study of systems involving the interaction of a large number of “entities,” which is my way of abstractly and generally capturing individuals, institutions, corporations, biological organisms, or even the individual chemical components of which they are made (e.g., proteins and DNA). Current technology has facilitated the collection and public availability of vasts amounts of data, particularly capturing system behavior at fine levels of granularity. In my group, we study behavioral data of strategic nature at big data levels. One of our main objectives is to develop computational tools for data science, and in particular learning large-population models from such big sources of behavioral data that we can later use to study, analyze, predict and alter future system behavior at a variety of scales, and thus improve the overall efficiency of real-world complex systems (e.g., the smart grid, social and political networks, independent security and defense systems, and microfinance markets, to name a few).

jieshen-small

Jie Shen

By | | No Comments

My research interests are in the digital diagnosis of material damage based on sensors, computational science and numerical analysis with large-scale 3D computed tomography data: (1) Establishment of a multi-resolution transformation rule of material defects. (2) Design of an accurate digital diagnosis method for material damage. (3) Reconstruction of defects in material domains from X-ray CT data . (4) Parallel computation of materials damage. My team also conducted a series of studies for improving the quality of large-scale laser scanning data in reverse engineering and industrial inspection: (1) Detection and removal of non-isolated Outlier Data Clusters (2) Accurate correction of surface data noise of polygonal meshes (3) Denoising of two-dimensional geometric discontinuities.

Processing and Analysis of 3D Large-Scale Engineering Data

Processing and Analysis of 3D Large-Scale Engineering Data