Heather B. Mayes

By |

Heather B. Mayes, PhD, is Assistant Professor of Chemical Engineering in the College of Engineering at The University of Michigan, Ann Arbor.

The Team Mayes and Blue focuses on discovering fundamental structure-function relationships that govern how proteins and sugars interact in applications from renewable materials to human health. We use atomistic simulation (molecular mechanics and quantum mechanics) to determine the fundamental, microscopic interactions that determine macroscopically observable phenomena. The resulting mechanistic understanding is harnessed to engineer more efficient proteins to meet biotechnology needs, whether to break down biomass to create feedstock for renewable fuels and chemicals, or create prebiotic carbohydrates.

Molecular simulations allow us to discover fundamental mechanistic processes, such as the overall energies associated with carbohydrate procession into an enzyme (A), and the individual structural components governing the mechanism, such as electrostatic interactions as a function of position (B). These simulations create rich data sets from which we can determine these structure-function relationships and use them to make predictions of how mutations to proteins can change function, thus enabling rational enzyme design.

 

Bryan R. Goldsmith

By |

Bryan R. Goldsmith, PhD, is Assistant Professor in the department of Chemical Engineering within the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Goldsmith’s research group utilizes first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., compressed sensing, kernel ridge regression, and subgroup discovery) to extract insights of catalysts and materials for sustainable chemical and energy production and to help create a platform for their design. For example, the group has exploited subgroup discovery as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data.  They also have been using compressed sensing techniques to find physically meaningful models that predict the properties of perovskite (ABX3) compounds.

Prof. Goldsmith’s areas of research encompass energy research, materials science, nanotechnology, physics, and catalysis.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).