Peers Health and U-M begin research partnership using disability and workers’ comp healthcare data

By | General Interest, Happenings, News, Research

Peers Health and the University of Michigan are starting a two-year research project that will apply advanced learning technologies to a proprietary global database of millions of de-identified disability and workers’ compensation cases. The goals of the project include developing a prescriptive modeling framework to facilitate development of optimal return-to-work plans for injured or ill patients.

Public policy experts have begun to connect patients’ ability to perform their productive endeavors, such as their job, to their state of general health and well-being. The findings from this project, by helping define when someone objectively has returned to health, could inform decision-making in virtually every healthcare episode.

The principal investigators in the project, Dr. Brian Denton and Dr. Jenna Wiens, are both renowned experts in medical machine learning. Dr. Denton, a professor of Industrial and Operations Engineering and Urology, and Dr. Wiens, an assistant professor of Computer Science and Engineering, are both affiliated with the Michigan Institute of Data Science (MIDAS) at U-M.

Peers Health recently announced an expanded partnership with ODG, an MCG company and part of the Hearst Health Network, to aggressively acquire new data to enhance ODG functionality and to fuel this research. Jon Seymour, MD, CEO of Peers, said, “This is a new phase in medical publishing where raw data collection is the editorial function and cutting-edge machine learning is the technology factor. We turned to the University of Michigan due to its impressive data science programs spanning multiple departments, as well as the specific experience of Dr. Denton and Dr. Wiens in medical applications. We’re confident this initiative will attract many new data contributors along the way.”

“The collaboration with Peers Health is exciting because it provides data that can help build a model that will reduce the time — from both a safety and productivity perspective — for people to return to work following sickness or injury,” Denton said. “Streaming data in from existing patients will allow our model to adapt and improve over time.”

Wiens added: “These data contain a particularly interesting training label: days away from work. We hypothesize that this will be a strong signal for the type, timing, and effectiveness of the treatments and therapies.”

The U-M partnership with Peers was established by MIDAS and the university’s Business Engagement Center (BEC).

“This partnership illustrates the power of combining data from the healthcare industry with the data science expertise of U-M faculty,” said Dr. Alfred Hero, professor of Engineering and co-director of MIDAS.

“It is energizing for the BEC to be part of these innovative collaborative relationships that create real impact in the world,” added BEC Director Amy Klinke.

 

U-M fosters thriving artificial intelligence and machine learning research

By | General Interest, HPC, News, Research

Research using machine learning and artificial intelligence — tools that allow computers to learn about and predict outcomes from massive datasets — has been booming at the University of Michigan. The potential societal benefits being explored on campus are numerous, from on-demand transportation systems to self-driving vehicles to individualized medical treatments to improved battery capabilities.

The ability of computers and machines generally to learn from their environments is having transformative effects on a host of industries — including finance, healthcare, manufacturing, and transportation — and could have an economic impact of $15 trillion globally according to one estimate.

But as these methods become more accurate and refined, and as the datasets needed become bigger and bigger, keeping up with the latest developments and identifying and securing the necessary resources — whether that means computing power, data storage services, or software development — can be complicated and time-consuming. And that’s not to mention complying with privacy regulations when medical data is involved.

“Machine learning tools have gotten a lot better in the last 10 years,” said Matthew Johnson-Roberson, Assistant Professor of Engineering in the Department of Naval Architecture & Marine Engineering and the Department of Electrical Engineering and Computer Science. “The field is changing now at such a rapid pace compared to what it used to be. It takes a lot of time and energy to stay current.”

Diagram representing the knowledge graph of an artificial intelligence system, courtesy of Jason Mars, assistant professor, Electrical Engineering and Computer Science, U-M

Johnson-Roberson’s research is focused on getting computers and robots to better recognize and adapt to the world, whether in driverless cars or deep-sea mapping robots.

“The goal in general is to enable robots to operate in more challenging environments with high levels of reliability,” he said.

Johnson-Roberson said that U-M has many of the crucial ingredients for success in this area — a deep pool of talented researchers across many disciplines ready to collaborate, flexible and personalized support, and the availability of computing resources that can handle storing the large datasets and heavy computing load necessary for machine learning.

“The people is one of the reasons I came here,” he said. “There’s a broad and diverse set of talented researchers across the university, and I can interface with lots of other domains, whether it’s the environment, health care, transportation or energy.”

“Access to high powered computing is critical for the computing-intensive tasks, and being able to leverage that is important,” he continued. “One of the challenges is the data. A major driver in machine learning is data, and as the datasets get more and more voluminous, so does the storage needs.”

Yuekai Sun, an assistant professor in the Statistics Department, develops algorithms and other computational tools to help researchers analyze large datasets, for example, in natural language processing. He agreed that being able to work with scientists from many different disciplines is crucial to his research.

“I certainly find the size of Michigan and the inherent diversity that comes with it very stimulating,” he said. “Having people around who are actually working in these application areas helps guide the direction and the questions that you ask.”

Sun is also working on analyzing the potential discriminatory effects of algorithms used in decisions like whether to give someone a loan or to grant prisoners parole.

“If you use machine learning, how do you hold an algorithm or the people who apply it accountable? What does it mean for an algorithm to be fair?” he said. “Can you check whether this notion of non-discrimination is satisfied?”

Jason Mars, an assistant professor in the Electrical Engineering and Computer Science department and co-founder of a successful spinoff called Clinc, is applying artificial intelligence to driverless car technology and a mobile banking app that has been adopted by several large financial institutions. The app, called Finie, provides a much more conversational interface between users and their financial information than other apps in the field.

“There is going to be an expansion of the number of problems solved and number of contributions that are AI-based,” Mars said. He predicted that more researchers at U-M will begin exploring AI and ML as they understand the potential.

“It’s going to require having the right partner, the right experts, the right infrastructure, and the best practices of how to use them,” he said.

He added that U-M does a “phenomenal job” in supporting researchers conducting AI and ML research.

“The level of support and service is awesome here,” he said. “Not to mention that the infrastructure is state of the art. We stay relevant to the best techniques and practices out there.”

Advanced Research Computing at U-M, in part through resources from the university-wide Data Science Initiative, provides computing infrastructure, consulting expertise, and support for interdisciplinary research projects to help scientists conducting artificial intelligence and machine learning research.

For example, Consulting for Statistics, Computing and Analytics Research, an ARC unit, has several consultants on staff with expertise in machine learning and predictive analysis with large, complex, and heterogeneous data. CSCAR recently expanded capacity to support very large-scale machine learning using tools such as Google’s TensorFlow.

CSCAR consultants are available by appointment or on a drop-in basis, free of charge. See cscar.research.umich.edu or email cscar@umich.edu for more information.

CSCAR also provides workshops on topics in machine learning and other areas of data science, including sessions on Machine Learning in Python, and an upcoming workshop in March titled “Machine Learning, Concepts and Applications.”

The computing resources available to machine learning and artificial intelligence researchers are significant and diverse. Along with the campus-wide high performance computing cluster known as Flux, the recently announced Big Data cluster Cavium ThunderX will give researchers a powerful new platform for hosting artificial intelligence and machine learning work. Both clusters are provided by Advanced Research Computing – Technology Services (ARC-TS).

All allocations on ARC-TS clusters include access to software packages that support AI/ML research, including TensorFlow, Torch, and Spark ML, among others.

ARC-TS also operates the Yottabyte Research Cloud (YBRC), a customizable computing platform that recently gained the capacity to host and analyze data governed by the HIPAA federal privacy law.

Also, the Michigan Institute for Data Science (MIDAS) (also a unit of ARC) has supported several AI/ML projects through its Challenge Initiative program, which has awarded more than $10 million in research support since 2015.

For example, the Analytics for Learners as People project is using sensor-based machine learning tools to translate data on academic performance, social media, and survey data into attributes that will form student profiles. Those profiles will help link academic performance and mental health with the personal attributes of students, including values, beliefs, interests, behaviors, background, and emotional state.

Another example is the Reinventing Public Urban Transportation and Mobility project, which is using predictive models based on machine learning to develop on-demand, multi-modal transportation systems for urban areas.

In addition, MIDAS supports student groups involved in this type of research such as the Michigan Student Artificial Intelligence Lab (MSAIL) and the Michigan Data Science Team (MDST).

(A version of this piece appeared in the University Record.)

Video available from MIDAS Research Forum

By | General Interest, Happenings, News, Research

Video is now available from the MIDAS Research Forum held Dec. 1 in the Michigan League at http://myumi.ch/6vA3V

The forum featured U-M students and faculty showcasing their data science research; a workshop on how to work with industry; presentations from student groups; and a summary of the data science consulting and infrastructure services available to the U-M research community.

NOTE: The keynote presentation from Christopher Rozell of the Georgia Institute of Technology will be available in the near future.

Info sessions on graduate studies in computational and data sciences — Sept. 21 and 25

By | Educational, Events, General Interest, News, Research

Learn about graduate programs that will prepare you for success in computationally intensive fields — pizza and pop provided

  • The Ph.D. in Scientific Computing is open to all Ph.D. students who will make extensive use of large-scale computation, computational methods, or algorithms for advanced computer architectures in their studies. It is a joint degree program, with students earning a Ph.D. from their current departments, “… and Scientific Computing” — for example, “Ph.D. in Aerospace Engineering and Scientific Computing.”
  • The Graduate Certificate in Computational Discovery and Engineering trains graduate students in computationally intensive research so they can excel in interdisciplinary HPC-focused research and product development environments. The certificate is open to all students currently pursuing Master’s or Ph.D. degrees at the University of Michigan.
  • The Graduate Certificate in Data Science is focused on developing core proficiencies in data analytics:
    1) Modeling — Understanding of core data science principles, assumptions and applications;
    2) Technology — Knowledge of basic protocols for data management, processing, computation, information extraction, and visualization;
    3) Practice — Hands-on experience with real data, modeling tools, and technology resources.

Times / Locations:

U-M, SJTU research teams share $1 million for data science projects

By | Data, General Interest, Happenings, News, Research

Five research teams from the University of Michigan and Shanghai Jiao Tong University in China are sharing $1 million to study data science and its impact on air quality, galaxy clusters, lightweight metals, financial trading and renewable energy.

Since 2009, the two universities have collaborated on a number of research projects that address challenges and opportunities in energy, biomedicine, nanotechnology and data science.

In the latest round of annual grants, the winning projects focus on data science and how it can be applied to chemistry and physics of the universe, as well as finance and economics.

For more, read the University Record article.

For descriptions of the research projects, see the MIDAS/SJTU partnership page.

Call for Proposals: Amazon Research Awards, deadline 9/15/17

By | Data, Educational, Funding Opportunities, News, Research

The Amazon Research Awards (ARA) program offers awards of up to $80,000 in cash and $20,000 in AWS promotional credits to faculty members at academic institutions in North America and Europe for research in these areas:

  • Computer vision
  • General AI
  • Knowledge management and data quality
  • Machine learning
  • Machine translation
  • Natural language understanding
  • Personalization
  • Robotics
  • Search and information retrieval
  • Security, privacy and abuse prevention
  • Speech

The ARA program funds projects conducted primarily by PhD students or post docs, under the supervision of the faculty member awarded the funds. To encourage collaboration and the sharing of insights, each funded proposal team is assigned an appropriate Amazon research contact. Amazon invites ARA recipients to speak at Amazon offices worldwide about their work, meet with Amazon research groups face-to-face, and encourages ARA recipients to publish their research outcome and commit related code to open-source code repositories.

Submissions are to be made online and details including rules and who may apply are located here.

Liza Levina, PhD, Chosen IMS Medallion Lecturer in 2019

By | Events, Feature, General Interest, Happenings, News, Research

Professor Liza Levina has been selected to present an Institute of Mathematical Statistics (IMS) Medallion Lecture at the 2019 Joint Statistical Meeting (JSM).

Each year eight Medallion Lecturers are chosen from across all areas of statistics and probability by the IMS Committee on Special Lectures. The Medallion nomination is an honor and an acknowledgment of a significant research contribution to one or more areas of research. Each Medallion Lecturer will receive a Medallion in a brief ceremony preceding the lecture.

Workshop co-chaired by MIDAS co-director Prof. Hero releases proceedings on inference in big data

By | Al Hero, Educational, General Interest, Research

The National Academies Committee on Applied and Theoretical Statistics has released proceedings from its June 2016 workshop titled “Refining the Concept of Scientific Inference When Working with Big Data,” co-chaired by Alfred Hero, MIDAS co-director and the John H Holland Distinguished University Professor of Electrical Engineering and Computer Science.

The report can be downloaded from the National Academies website.

The workshop explored four key issues in scientific inference:

  • Inference about causal discoveries driven by large observational data
  • Inference about discoveries from data on large networks
  • Inference about discoveries based on integration of diverse datasets
  • Inference when regularization is used to simplify fitting of high-dimensional models.

The workshop brought together statisticians, data scientists and domain researchers from different biomedical disciplines in order to identify new methodological developments that hold significant promise, and to highlight potential research areas for the future. It was partially funded by the National Institutes of Health Big Data to Knowledge Program, and the National Science Foundation Division of Mathematical Sciences.

MIDAS announces second round of Data Science Challenge Initiative awards, in health and social science

By | General Interest, News, Research

Five research projects — three in health and two in social science — have been awarded funding in the second round of the Michigan Institute for Data Science Challenge Initiative program.

The projects will receive funding from MIDAS as part of the Data Science Initiative announced in fall 2015.

The goal of the multiyear MIDAS Challenge Initiatives program is to foster data science projects that have the potential to prompt new partnerships between U-M, federal research agencies and industry. The challenges are focused on four areas: transportation, learning analytics, social science and health science. For more information, visit midas.umich.edu/challenges.

The projects, determined by a competitive submission process, are:

  • Title: Michigan Center for Single-Cell Genomic Data Analysis
    Description: The center will establish methodologies to analyze sparse data collected from single-cell genome sequencing technologies. The center will bring together experts in mathematics, statistics and computer science with biomedical researchers.
    Lead researchers: Jun Li, Department of Human Genetics; Anna Gilbert, Mathematics
    Research team: Laura Balzano, Electrical Engineering and Computer Science; Justin Colacino, Environmental Health Sciences; Johann Gagnon-Bartsch, Statistics; Yuanfang Guan, Computational Medicine and Bioinformatics; Sue Hammoud, Human Genetics; Gil Omenn, Computational Medicine and Bioinformatics; Clay Scott, Electrical Engineering and Computer Science; Roman Vershynin, Mathematics; Max Wicha, Oncology.
  • Title: From Big Data to Vital Insights: Michigan Center for Health Analytics and Medical Prediction (M-CHAMP)
    Description: The center will house a multidisciplinary team that will confront a core methodological problem that currently limits health research — exploiting temporal patterns in longitudinal data for novel discovery and prediction.
    Lead researchers: Brahmajee Nallamothu, Internal Medicine; Ji Zhu, Statistics; Jenna Wiens, Electrical Engineering and Computer Science; Marcelline Harris, Nursing.
    Research team: T. Jack Iwashyna, Internal Medicine; Jeffrey McCullough, Health Management and Policy (SPH); Kayvan Najarian, Computational Medicine and Bioinformatics; Hallie Prescott, Internal Medicine; Andrew Ryan, Health Management and Policy (SPH); Michael Sjoding, Internal Medicine; Karandeep Singh, Learning Health Sciences (Medical School); Kerby Shedden, Statistics; Jeremy Sussman, Internal Medicine; Vinod Vydiswaran, Learning Health Sciences (Medical School); Akbar Waljee, Internal Medicine.
  • Title: Identifying Real-Time Data Predictors of Stress and Depression Using Mobile Technology
    Description: Using an app platform that integrates signals from both mobile phones and wearable sensors, the project will collect data from over 1,000 medical interns to identify the dynamic relationships between mood, sleep and circadian rhythms. These relationships will be utilized to inform the type and timing of personalized data feedback for a mobile micro-randomized intervention trial for depression under stress.
  • Lead researchers: Srijan Sen, Psychiatry; Margit Burmeister, Molecular and Behavioral Neuroscience.
    Research team:  Lawrence An, Internal Medicine; Amy Cochran, Mathematics; Elena Frank, Molecular and Behavioral Neuroscience; Daniel Forger, Mathematics; Thomas Insel (Verily Life Sciences); Susan Murphy, Statistics; Maureen Walton, Psychiatry; Zhou Zhao, Molecular and Behavioral Neuroscience.
  • Title: Computational Approaches for the Construction of Novel Macroeconomic Data
    Description: This project will develop an economic dataset construction system that takes as input economic expertise as well as social media data; will deploy a data construction service that hosts this construction tool; and will use this tool and service to build an “economic datapedia,” a compendium of user-curated economic datasets that are collectively published online.
    Lead researcher: Matthew Shapiro, Department of Economics
    Research team: Michael Cafarella, Computer Science and Engineering; Jia Deng, Electrical Engineering and Computer Science; Margaret Levenstein, Inter-university Consortium for Political and Social Research.
  • Title: A Social Science Collaboration for Research on Communication and Learning based upon Big Data
    Description: This project is a multidisciplinary collaboration meant to introduce social scientists, computer scientists and statisticians to the methods and theories of engaging observational data and the results of structured data collections in two pilot projects in the area of political communication and one investigating parenting issues. The projects involve the integration of geospatial, social media and longitudinal data.
    Lead researchers: Michael Traugott, Center for Political Studies, ISR; Trivellore Raghunathan, Biostatistics
    Research team: Leticia Bode, Communications, Georgetown University; Ceren Budak, U-M School of Information; Pamela Davis-Keane, U-M Psychology, ISR; Jonathan Ladd, Public Policy, Georgetown; Zeina Mneimneh, U-M Survey Research Center; Josh Pasek, U-M Communications; Rebecca Ryan, Public Policy, Georgetown; Lisa Singh, Public Policy, Georgetown; Stuart Soroka, U-M Communications.

For more details, see the press releases on the social science and health science projects.