ortiz-small

Luis E. Ortiz

By | | No Comments

The study of large complex systems of structured strategic interaction, such as economic, social, biological, financial, or large computer networks, provides substantial opportunities for fundamental computational and scientific contributions. My research focuses on problems emerging from the study of systems involving the interaction of a large number of “entities,” which is my way of abstractly and generally capturing individuals, institutions, corporations, biological organisms, or even the individual chemical components of which they are made (e.g., proteins and DNA). Current technology has facilitated the collection and public availability of vasts amounts of data, particularly capturing system behavior at fine levels of granularity. In my group, we study behavioral data of strategic nature at big data levels. One of our main objectives is to develop computational tools for data science, and in particular learning large-population models from such big sources of behavioral data that we can later use to study, analyze, predict and alter future system behavior at a variety of scales, and thus improve the overall efficiency of real-world complex systems (e.g., the smart grid, social and political networks, independent security and defense systems, and microfinance markets, to name a few).

lynch-small

Jerome Lynch

By | | No Comments

Our group works at the forefront of deploying large-scale sensor networks to the built environment for monitoring and control of civil infrastructure systems including bridges, roads, rail networks, and pipelines; this research portfolio falls within the broader class of cyber-physical systems (CPS). To maximize the benefit of the massive data sets we collect from operational infrastructure systems, we undertake research in the area of relational and NoSQL database systems, cloud-based analytics, and data visualization technologies. In addition, our algorithmic work is focused on the use of statistical signal processing, pattern classification, machine learning, and model inversion/updating techniques to automate the interrogation sensor data collected. The ultimate aim of our work is to harness the full potential of data science to provide system users with real-time, actionable information obtained from the raw sensor data collected.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.