Matthew Kay

By |

Matthew Kay, PhD, is Assistant Professor of Information, School of Information and Assistant Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Kay’s research includes work on communicating uncertainty, usable statistics, and personal informatics. People are increasingly exposed to sensing and prediction in their daily lives (“how many steps did I take today?”, “how long until my bus shows up?”, “how much do I weigh?”). Uncertainty is both inherent to these systems and usually poorly communicated. To build understandable data presentations, we must study how people interpret their data and what goals they have for it, which informs the way that we should communicate results from our models, which in turn determines what models we must use in the first place. Prof. Kay tackles these problems using a multi-faceted approach, including qualitative and quantitative analysis of behavior, building and evaluating interactive systems, and designing and testing visualization techniques. His work draws on approaches from human-computer interaction, information visualization, and statistics to build information visualizations that people can more easily understand along with the models to back those visualizations.

 

Santiago Schnell

By |

Dr. Schnell works at the interface between biophysical chemistry, mathematical and computational biology, and pathophysiology. As an independent scientist, his primary research interest is to use mathematical, computational and statistical methods to design or select optimal procedures and experiments, and to provide maximum information by analyzing biochemical data. His laboratory deals with the following topics:

(i) Development and implementation of mathematical, computational, and statistical methods to identify and characterize reaction mechanisms.

(ii) Investigate and test performance design of experiments or standards to quantify, interpret and analyze biochemical data.

(iii) Development of new algorithms and software to analyze biochemical data.

The key objective of my research is to create suitable standards and appropriate support of standards leading to reproducible results in the biochemical sciences. Reproducibility is central to scientific credibility. Meta-research has repeatedly shown that accurate reporting and sound peer-review do not by themselves guarantee the reproducibility of scientific results. One of the leading causes of poor reproducibility is limited research efforts in quantitative biology and chemometrics. In my laboratory, we are developing new ways to assess the reproducibility of quantitative findings in the biochemical sciences.

As a team scientist, Dr. Schnell’s research interest is to investigate complex biomedical systems comprising many interacting components, where modeling and theory may aid in the identification of the key mechanisms underlying the behavior of the system as a whole. His collaborators are primarily basic scientists who focus on the identification of molecular, biochemical or developmental mechanisms associated with diseases. To this end, Dr. Schnell’s expertise plays a central role in the identification of these mechanisms. Using mathematical and computational models, Dr. Schnell can formulate several hypothetical model mechanisms in parallel, which are compared with independent experimental data used to construct the models. The resulting comparisons are then independent between models, and any models that satisfy statistical measures of similarity will be used to make predictions, which will be tested experimentally by his collaborators. The model validated by the experiments will be considered the mechanism capable of explaining the behavior of the systems.

Pamela Davis-Kean

By |

Pamela Davis-Kean, PhD, is Professor of Psychology, College of Literature, Science, and the Arts, and Research Professor, Survey Research Center and Research Center for Group Dynamics, Institute for Social Research, at the University of Michigan, Ann Arbor.

Prof. Davis-Kean is the Director of the Population, Neurodevelopment, and Genetics program at the Institute for Social Research. This group examines the complex transactions of brain, biology, and behavior as children and families develop across time. She is interested in both micro (brain and biology) and macro (family and socioeconomic conditions) aspects of development to understand the full developmental story of individuals.  Her primary focus in this area is how stress relates to family socioeconomic status and how that translates to parenting beliefs and behaviors that influence the development of children.

Margaret Hedstrom

By |

Margaret Hedstrom, PhD, is the Robert M Warner Collegiate Professor of Information in the School of Information and Faculty Associate in the Institute for Social Research.

Prof. Hedstrom’s research centers on the methods, costs, incentives, and implementation of scalable digital curation and archiving services as a core element of the underlying infrastructure for research data management, reproducible research, and data analysis.  She studies the social and technical dimensions digital curation including data sharing behaviors among scientists in different research domains, techniques for automated metadata extraction and user-contributed metadata, requirements for meaningful reuse of numeric, image, and textual data, and long-term preservation of digital information.  Her current research projects span projects involving researchers in environmental science and sustainability, social science, bioinformatics, and materials science.