Zhenke Wu

By |

Zhenke Wu is an Assistant Professor of Biostatistics, and Research Assistant Professor in Michigan Institute of Data Science (MIDAS). He received his Ph.D. in Biostatistics from the Johns Hopkins University in 2014 and then stayed at Hopkins for his postdoctoral training before joining the University of Michigan. Dr. Wu’s research focuses on the design and application of statistical methods that inform health decisions made by individuals, or precision medicine. The original methods and software developed by Dr. Wu are now used by investigators from research institutes such as CDC and Johns Hopkins, as well as site investigators from developing countries, e.g., Kenya, South Africa, Gambia, Mali, Zambia, Thailand and Bangladesh.

V. G. Vinod Vydiswaran

By |

V.G.Vinod Vydiswaran, PhD, is Assistant Professor in the Department of Learning Health Sciences with a secondary appointment in the School of Information at the University of Michigan, Ann Arbor.

Dr. Vydiswaran’s research focuses on developing and applying text mining, natural language processing, and machine learning methodologies for extracting relevant information from health-related text corpora. This includes medically relevant information from clinical notes and biomedical literature, and studying the information quality and credibility of online health communication (via health forums and tweets). His previous work includes developing novel information retrieval models to assist clinical decision making, modeling information trustworthiness, and addressing the vocabulary gap between health professionals and  laypersons.

Andrzej T Galecki

By |

Andrzej Galecki, MD, PhD, is Research Professor in the department of Biostatistics, School of Public Health, and Research Professor in the Institute of Gerontology at the University of Michigan, Ann Arbor.

Gilbert S. Omenn

By |

Gilbert Omenn, MD, PhD, is Professor of Computational Medicine & Bioinformatics with appointments in Human Genetics, Molecular Medicine & Genetics in the Medical School and Professor of Public Health in the School of Public Health and the Harold T. Shapiro Distinguished University Professor at the University of Michigan, Ann Arbor.

Doctor Omenn’s current research interests are focused on cancer proteomics, splice isoforms as potential biomarkers and therapeutic tar- gets, and isoform-level and single-cell functional networks of transcripts and proteins. He chairs the global Human Proteome Project of the Human Proteome Organization.

Romesh P. Nalliah

By |

Dr. Nalliah’s research expertise is process evaluation. He has studied various healthcare processes, educational processes and healthcare economics. Dr. Nalliah’s research studies were the first time nationwide data was used to highlight emergency room resource utilization for managing dental conditions in the United States. Dr. Nalliah is internationally recognized as a pioneer in the field of nationwide hospital dataset research for dental conditions and has numerous publications in peer reviewed journals. After completing a masters degree at Harvard School of Public Health, Dr. Nalliah’s interests have expanded and he has studied various public health issues including sports injuries, poisoning, child abuse, motor vehicle accidents and surgical processes (like stem cell transplants, cardiac valve surgery and fracture reduction). National recognition of his expertise in these broader topics of medicine have given rise to opportunities to lecture to medical residents, nurse practitioners, students in medical, pharmacy and nursing programs about oral health. This is his passion- that his research should inform an evolution of health education curriculum and practice.

Dr. Nalliah’s professional mission is to improve healthcare delivery systems and he is interested in improving processes, minimizing inefficiencies, reducing healthcare bottlenecks, increasing quality, and increase task sharing which will lead to a patient-centered, coherent healthcare system. Dr. Nalliah’s research has identified systems constraints and his goal is to influence policy and planning to break those constraints and improve healthcare delivery.

Omid Dehzangi

By |

Omid Dehzangi, PhD, is Assistant Professor of Computer and Information Science, College of Engineering and Computer Science, at the University of Michigan, Dearborn.

Wearable health technology is drawing significant attention for good reasons. The pervasive nature of such systems providing ubiquitous access to the continuous personalized data will transform the way people interact with each other and their environment. The resulting information extracted from these systems will enable emerging applications in healthcare, wellness, emergency response, fitness monitoring, elderly care support, long-term preventive chronic care, assistive care, smart environments, sports, gaming, and entertainment which create many new research opportunities and transform researches from various disciplines into data science which is the methodological terminology for data collection, data management, data analysis, and data visualization. Despite the ground-breaking potentials, there are a number of interesting challenges in order to design and develop wearable medical embedded systems. Due to limited available resources in wearable processing architectures, power-efficiency is demanded to allow unobtrusive and long-term operation of the hardware. Also, the data-intensive nature of continuous health monitoring requires efficient signal processing and data analytic algorithms for real-time, scalable, reliable, accurate, and secure extraction of relevant information from an overwhelmingly large amount of data. Therefore, extensive research in their design, development, and assessment is necessary. Embedded Processing Platform Design The majority of my work concentrates on designing wearable embedded processing platforms in order to shift the conventional paradigms from hospital-centric healthcare with episodic and reactive focus on diseases to patient-centric and home-based healthcare as an alternative segment which demands outstanding specialized design in terms of hardware design, software development, signal processing and uncertainty reduction, data analysis, predictive modeling and information extraction. The objective is to reduce the costs and improve the effectiveness of healthcare by proactive early monitoring, diagnosis, and treatment of diseases (i.e. preventive) as shown in Figure 1.

Figure 1. Embedded processing platform in healthcare

Jieping Ye

By |

Jieping Ye, PhD, is Associate Professor of Computational Medicine and Bioinformatics in the Medical School at the University of Michigan, Ann Arbor.

The Ye Lab has been conducting fundamental research in machine learning and data mining, developing computational methods for biomedical data analysis, and building informatics software. We have developed novel machine learning algorithms for feature extraction from high-dimensional data, sparse learning, multi-task learning, transfer learning, active learning, multi-label classification, and matrix completion. We have developed the SLEP (Sparse Learning with Efficient Projections) package, which includes implementations of large-scale sparse learning models, and the MALSAR (Multi-tAsk Learning via StructurAl Regularization) package, which includes implementations of state-of-the-art multi-task learning models. SLEP achieves state-of-the-art performance for many sparse learning models, and it has become one of the most popular sparse learning software packages. With close collaboration with researchers at the biomedical field, we have successfully applied these methods for analyzing biomedical data, including clinical image data and genotype data.

Issam El Naqa

By |

Our lab’s research interests are in the areas of oncology bioinformatics, multimodality image analysis, and treatment outcome modeling. We operate at the interface of physics, biology, and engineering with the primary motivation to design and develop novel approaches to unravel cancer patients’ response to chemoradiotherapy treatment by integrating physical, biological, and imaging information into advanced mathematical models using combined top-bottom and bottom-top approaches that apply techniques of machine learning and complex systems analysis to first principles and evaluating their performance in clinical and preclinical data. These models could be then used to personalize cancer patients’ chemoradiotherapy treatment based on predicted benefit/risk and help understand the underlying biological response to disease. These research interests are divided into the following themes:

  • Bioinformatics: design and develop large-scale datamining methods and software tools to identify robust biomarkers (-omics) of chemoradiotherapy treatment outcomes from clinical and preclinical data.
  • Multimodality image-guided targeting and adaptive radiotherapy: design and develop hardware tools and software algorithms for multimodality image analysis and understanding, feature extraction for outcome prediction (radiomics), real-time treatment optimization and targeting.
  • Radiobiology: design and develop predictive models of tumor and normal tissue response to radiotherapy. Investigate the application of these methods to develop therapeutic interventions for protection of normal tissue toxicities.

Jenna Wiens

By |

Jenna Wiens, PhD, is Assistant Professor of Computer Science and Engineering (CSE) in the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Wiens currently heads the MLD3 research group. Her primary research interests lie at the intersection of machine learning, data mining, and healthcare. Within machine learning, she is particularly interested in time-series analysis, transfer/multitask learning, causal inference, and learning intelligible models. The overarching goal of her research is to develop the computational methods needed to help organize, process, and transform patient data into actionable knowledge. Her work has applications in modeling disease progression and predicting adverse patient outcomes. For several years now, Prof. Wiens has been focused on developing accurate patient risk stratification approaches that leverage spatiotemporal data, with the ultimate goal of reducing the rate of healthcare-associated infections among patients admitted to hospitals in the US. In addition to her research in the healthcare domain, she also spends a portion of my time developing new data mining techniques for analyzing player tracking data from the NBA.

Puneet Manchanda

By |

My interest is in using econometrics, especially Bayesian econometrics, and machine learning methods to infer causality. I tend to work with mostly parametric models of firm and consumer behavior to assess the effectiveness of firm actions. My work spans a variety of industries such as pharmaceuticals, e-commerce, gaming and hi-technology.