Portrait of Jason Corso, Assistant Professor of Computer Science and Engineering, inside his lab

Photographer: Douglas Levere

Jason Corso

By | | No Comments

The Corso group’s main research thrust is high-level computer vision and its relationship to human language, robotics and data science. They primarily focus on problems in video understanding such as video segmentation, activity recognition, and video-to-text; methodology, models leveraging cross-model cues to learn structured embeddings from large-scale data sources as well as graphical models emphasizing structured prediction over large-scale data sources are their emphasis. From biomedicine to recreational video, imaging data is ubiquitous. Yet, imaging scientists and intelligence analysts are without an adequate language and set of tools to fully tap the information-rich image and video. His group works to provide such a language.¬† His long-term goal is a comprehensive and robust methodology of automatically mining, quantifying, and generalizing information in large sets of projective and volumetric images and video to facilitate intelligent computational and robotic agents that can natural interact with humans and within the natural world.

Relating visual content to natural language requires models at multiple scales and emphases; here we model low-level visual content, high-level ontological information, and these two are glued together with an adaptive graphical structure at the mid-level.

Relating visual content to natural language requires models at multiple scales and emphases; here we model low-level visual content, high-level ontological information, and these two are glued together with an adaptive graphical structure at the mid-level.

dinov-small

Ivo D. Dinov

By | | No Comments

Dr. Ivo Dinov directs the Statistics Online Computational Resource (SOCR), co-directs the multi-institutional Probability Distributome Project, and is an associate director for education of the Michigan Institute for Data Science (MIDAS).

Dr. Dinov is an expert in mathematical modeling, statistical analysis, computational processing and visualization of Big Data. He is involved in longitudinal morphometric studies of human development (e.g., Autism, Schizophrenia), maturation (e.g., depression, pain) and aging (e.g., Alzheimer’s and Parkinson’s diseases). Dr. Dinov is developing, validating and disseminating novel technology-enhanced pedagogical approaches for scientific education and active learning.

Analyzing Big observational data including thousands of Parkinson's disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.

Analyzing Big observational data including thousands of Parkinson’s disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.