long_nguyen_2012

Long Nguyen

By | | No Comments

I am broadly interested in statistical inference, which is informally defined as the process of turning data into prediction and understanding. I like to work with richly structured data, such as those extracted from texts, images and other spatiotemporal signals. In recent years I have gravitated toward a field in statistics known as Bayesian nonparametrics, which provides a fertile and powerful mathematical framework for the development of many computational and statistical modeling ideas. My motivation for all this came originally from an early interest in machine learning, which continues to be a major source of research interest. A primary focus of my group’s research in machine learning to develop more effective inference algorithms using stochastic, variational and geometric viewpoints.

yves

Yves Atchade

By | | No Comments

My current research explores the possibilities and limits of Markov Chain Monte Carlo (MCMC) methods in dealing with posterior or quasi-posterior distributions that arise from high-dimensional Bayesian (or quasi-Bayesian) inference in regression and graphical models. I also have some interests in optimization, and these revolve around the use of stochastic methods: whether (and how) the use of stochastic methods can help tackle large scale optimization problems of interest in statistics. I also have interests in the use of remote sensing data to study social and environmental issues in Africa.