Explore ARCExplore ARC

Bryan R. Goldsmith

By |

Bryan R. Goldsmith, PhD, is Assistant Professor in the department of Chemical Engineering within the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Goldsmith’s research group utilizes first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., compressed sensing, kernel ridge regression, and subgroup discovery) to extract insights of catalysts and materials for sustainable chemical and energy production and to help create a platform for their design. For example, the group has exploited subgroup discovery as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data.  They also have been using compressed sensing techniques to find physically meaningful models that predict the properties of perovskite (ABX3) compounds.

Prof. Goldsmith’s areas of research encompass energy research, materials science, nanotechnology, physics, and catalysis.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).


Mark Allison

By |

Mark Allison, PhD, is Assistant Professor of Computer Science in the department of Computer Science, Engineering and Physics at the University of Michigan-Flint.

Dr. Allison’s research pertains to the autonomic control of complex cyberphysical systems utilizing software models as first class artifacts. Domains being explored are microgrid energy management and unmanned aerial vehicles (UAVs) in swarms.


Brian Min

By |

Brian Min, PhD, is Associate Professor of Political Science in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor. Prof. Min holds secondary appointments as Research Associate Professor in the Center for Political Studies and the Institute for Social Research.

Prof. Min studies the political economy of development with an emphasis on distributive politics, public goods provision, and energy politics. His research uses high-resolution satellite imagery to study the distribution of electricity across and within the developing world. He has collaborated closely with the World Bank using satellite technologies and statistical algorithms to monitor electricity access in India and Africa, including the creation of a web platform to visualize twenty years of change in light output for every village in India (http://nightlights.io).



Suleyman Uludag

By |

My research spans security, privacy, and optimization of data collection particularly as applied to the Smart Grid, an augmented and enhanced paradigm for the conventional power grid. I am particularly interested in optimization approaches that take a notion of security and/or privacy into the modeling explicitly. At the intersection of the Intelligent Transportation Systems, Smart Grid, and Smart Cities, I am interested in data privacy and energy usage in smart parking lots. Protection of data and availability, especially under assault through a Denial-of-Service attacks, represents another dimension of my area of research interests. I am working on developing data privacy-aware bidding applications for the Smart Grid Demand Response systems without relying on trusted third parties. Finally, I am interested in educational and pedagogical research about teaching computer science, Smart Grid, cyber security, and data privacy.

This figure shows the data collection model I used in developing a practical and secure Machine-to-Machine data collection protocol for the Smart Grid.

This figure shows the data collection model I used in developing a practical and secure
Machine-to-Machine data collection protocol for the Smart Grid.

Wencong Su

By |

In the next-generation power systems (Smart Grid), a large number of distributed energy devices (e.g., distributed generators, distributed energy storage, loads, smart meters) are connected to each other in an internet-like structure. Incorporating millions of new energy devices will require wide-ranging transformation of the nation’s aging electrical grid infrastructure. The key challenge is to efficiently manage a great amount of devices through distributed intelligence. The distributed grid intelligence (DGI) agent is the brain of distributed energy devices. DGI enables every single energy device to not only have a certain intelligence to achieve optimal management locally, but also coordinate with others to achieve a common goal. The massive volume of real-time data collected by DGI will help the grid operators gain a better understanding of a large-scale and highly dynamic power systems. In conventional power systems, the system operation is performed using purely centralized data storage and processing approaches. However, as the number of DGIs increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art centralized information processing architecture will no longer be sustainable under such big data explosion. The ongoing research work illustrates how advanced ideas from IT industry and power industry can be combined in a unique way. The proposed high-availability distributed file system and data processing framework can be easily tailored to support other data-intensive applications in a large-scale and complex power grids. For example, the proposed DGI nodes can be embedded into any distributed generators (e.g., roof-top PV panel), distributed energy storage devices (e.g., electric vehicle), and loads (e.g., smart home) in a future residential distribution system. If implemented successfully, we can translate Smart Grid with high-volume, high-velocity, and high-variety data to a completely distributed cyber-physical system architecture. In addition, the proposed work can be easily extended to support other cyber-physical system applications (e.g., intelligent transportation system).

Big Data Applications in Power Systems

Big Data Applications in Power Systems

Charu Chandra

By |

My research interests are in developing inter-disciplinary knowledge in System Informatics, as the basis for study of complex system problems with the fusion of theory, computation, and application components adopted from Systems and Informatics fields. In this framework, a complex system such as the supply chain is posited as a System-of-Systems; i.e., a collection of individual business entities organized as a composite system with their resources and capabilities pooled to obtain an interoperable and synergistic system, possessing common and shared goals and objectives. Informatics facilitates coordination and integration in the system by processing and sharing information among supply chain entities for improved decision-making.

A common theme of my research is the basic foundation of universality of system and the realization that what makes it unique is its environment. This has enabled to categorize problems, designs, models, methodologies, and solution techniques at macro and micro levels and develop innovative solutions by coordinating these levels in an integrated environment.

My goal is to study the efficacy of the body of knowledge available in Systems Theory, Information Science, Artificial Intelligence & Knowledge Management, Management Science, Industrial Engineering and Operations Research fields; applied uniquely to issues and problems of complex systems in the manufacturing and service sectors.

Theoretical work investigated by me in this research thrust relates to:

  • Developing Generalized System Taxonomies and Ontologies for complex systems management.
  • Experimenting with Problem Taxonomies for design and modeling efficiencies in complex system networks.
  • Developing methodologies, frameworks and reference models for complex systems management.
  • Computation and application development focused on developing algorithms and software development for:
    • Supply chain information system and knowledge library using Web-based technology as a dissemination tool.
    • Integration with Enterprise Resource Planning modules in SAP software.
    • Supply chain management problem-solving through application of problem specific simulation and optimization.

My research has extended to application domains in healthcare, textiles, automotive, and defense sectors. Problems and issues addressed relate to health care management, operationalizing of sustainability, energy conservation, global logistics management, mega-disaster recovery, humanitarian needs management, and entrepreneurship management.

Currently, my application focus is on expanding the breadth and depth of inquiry in the healthcare domain. Among the topics being investigated are: (1) the organization and structure of health care enterprises; and (2) operations and strategies that relate to management of critical success factors, such as costs, quality, innovation and technology adoption by health care providers. Two significant topics that I have chosen to study with regard to care for elderly patients suffering from chronic congestive heart failure and hypertension are: (1) the design of patient-centered health care delivery to improve quality of care; and (2) managing enhanced care costs due to readmission of these patients.

Data science applications: Real-time data processing in supply chains, Knowledge portals for decision-making in supply chains, information sharing for optimizing patient-centered healthcare delivery

Ming Xu

By |

My research focuses on developing and applying computational and data-enabled methodology in the broader area of sustainability. Main thrusts are as follows:

  1. Human mobility dynamics. I am interested in mining large-scale real-world travel trajectory data to understand human mobility dynamics. This involves the processing and analyzing travel trajectory data, characterizing individual mobility patterns, and evaluating environmental impacts of transportation systems/technologies (e.g., electric vehicles, ride-sharing) based on individual mobility dynamics.
  2. Global supply chains. Increasingly intensified international trade has created a connected global supply chain network. I am interested in understanding the structure of the global supply chain network and economic/environmental performance of nations.
  3. Networked infrastructure systems. Many infrastructure systems (e.g., power grid, water supply infrastructure) are networked systems. I am interested in understanding the basic structural features of these systems and how they relate to the system-level properties (e.g., stability, resilience, sustainability).

A network visualization (force-directed graph) of the 2012 US economy using the industry-by-industry Input-Output Table (15 sectors) provided by BEA. Each node represents a sector. The size of the node represents the economic output of the sector. The size and darkness of links represent the value of exchanges of goods/services between sectors. An interactive version and other data visualizations are available at http://mingxugroup.org/

Pascal Van Hentenryck

By |

Pascal Van Hentenryck’s research is focused on artificial intelligence, data science, and optimization, with applications in mobility and transportation, energy systems, and computational social choice. He is currently leading the RITMO project, partly funded by MIDAS, which focuses on designing novel models of mobility, mathematical and algorithmic approaches to operate them optimally, and software architectures and data-privacy mechanisms to deploy them. The RITMO project is also in the process of deploying its technology in a number of significant case studies, with a particular focus on social equity.

Tracking Shuttle Bus Location & Ridership

Siqian Shen

By |

Siqian Shen is an Associate Professor of Industrial and Operations Engineering at the University of Michigan and also serves as an Associate Director in the Michigan Institute for Computational Discovery & Engineering (MICDE). Her theoretical research interests are in integer programming, stochastic/robust optimization, and network optimization. Applications include optimization and risk analysis of energy, healthcare, cloud-computing, and transportation systems. Her work has been supported by the National Science Foundation, Army Research Office, Department of Energy, and industrial funds. Her work has appeared in journals such as Management ScienceOperations ResearchMathematical ProgrammingManufacturing and Service Operations ManagementINFORMS Journal on ComputingTransportation Research Part BIEEE Transactions on Power Systems, and others. She is the recipient of the INFORMS Computing Society Best Student Paper award (runner-up), IIE Pritsker Doctoral Dissertation Award (1st Place), IBM Smarter Planet Innovation Faculty Award, and Department of Energy (DoE) Early Career Award.

Martin J. Strauss

By |

Martin J. Strauss, PhD, is Professor of Mathematics, College of Literature, Science, and the Arts and Professor of Electrical Engineering and Computer Science, College of Engineering, in the University of Michigan, Ann Arbor.

Prof. Strauss’ interests include randomized approximation algorithms for massive data sets, including, specifically, sublinear-time algorithms for sparse recovery in the Fourier and other domains.  Other interests include data privacy, including privacy of energy usage data.