Zhenke Wu

By |

Zhenke Wu is an Assistant Professor of Biostatistics, and Research Assistant Professor in Michigan Institute of Data Science (MIDAS). He received his Ph.D. in Biostatistics from the Johns Hopkins University in 2014 and then stayed at Hopkins for his postdoctoral training before joining the University of Michigan. Dr. Wu’s research focuses on the design and application of statistical methods that inform health decisions made by individuals, or precision medicine. The original methods and software developed by Dr. Wu are now used by investigators from research institutes such as CDC and Johns Hopkins, as well as site investigators from developing countries, e.g., Kenya, South Africa, Gambia, Mali, Zambia, Thailand and Bangladesh.

Marcelline Harris

By |

Marcelline Harris, Ph.D., R.N., is Associate Professor of Systems, Populations and Leadership in the School of Nursing at the University of Michigan, Ann Arbor.

Dr. Harris’s research interests focus on what is being labeled the “continuous use” of clinical data (the use of clinical data for one or more purposes), computable knowledge representation strategies, and the use of electronic clinical data for practice and research.  Her research has been funded by NIH, AHRQ, RWJF, and PCORI.  Harris also has extensive enterprise level experience, having served in both scientific and operational positions that address the development and governance of systems that support the capture, storage, indexing, and retrieval of clinical data.  At Michigan, she retains this translational perspective, emphasizing clinical data for patient-centered research, clinical surveillance and predictive analytics.

Kerby Shedden

By |

Kerby Shedden, PhD, is Professor of Statistics, College of Literature, Science, and the Arts, Professor of Biostatistics, School of Public Health, and Director of the Consulting for Statistics, Computing, and Analytics Research (CSCAR) center.

Kerby Shedden received his PhD in Statistics from UCLA in 1999 and joined the University of Michigan the same year.  His research interests include genomics, genetics, and other areas of life science where large and complex data arise. He also is interested in computational statistics and statistical software development. He participates in many collaborative research efforts including biomarker screening for cancer and kidney disease outcomes, cell-based screening for understanding the behavior of chemical probes in cells, and genetic association analysis for longitudinal traits.