Lu Wei

By |

Lu Wei, DSc,  is Assistant Professor in the Department of Electrical and Computer Engineering at the University of Michigan, Dearborn.

Prof. Wei studies the analytical properties of interacting particle systems relevant to both classical and quantum information theory.


Necmiye Ozay

By |

Necmiye Ozay, PhD, is Assistant Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Ozay and her team develop the scientific foundations and associated algorithmic tools for compactly representing and analyzing heterogeneous data streams from sensor/information-rich networked dynamical systems. They take a unified dynamics-based and data-driven approach for the design of passive and active monitors for anomaly detection in such systems. Dynamical models naturally capture temporal (i.e., causal) relations within data streams. Moreover, one can use hybrid and networked dynamical models to capture, respectively, logical relations and interactions between different data sources. They study structural properties of networks and dynamics to understand fundamental limitations of anomaly detection from data. By recasting information extraction problem as a networked hybrid system identification problem, they bring to bear tools from computer science, system and control theory and convex optimization to efficiently and rigorously analyze and organize information. The applications include diagnostics, anomaly and change detection in critical infrastructure such as building management systems, transportation and energy networks.

Yi-Su Chen

By |

My current data science research interest lies in the broad area of supply chain and its management.   I am particularly interested in using longitudinal data set to identify early signals (or warning) and to draw causal inferences pertaining to supply chain security and product quality and safety.   I am also interested in developing experiments to capture the behavioral side of decision makings to be complementary to secondary data analysis.   Industry setting wise, I have based my research on the auto industry, and will expand my auto-industry centered research into a broader, transportation industry oriented context.   I am also interested in food and agricultural products, pharmaceutical, and medical devices industries where product quality and safety have significant implications to human life and society as a whole.

Ming Xu

By |

My research focuses on developing and applying computational and data-enabled methodology in the broader area of sustainability. Main thrusts are as follows:

  1. Human mobility dynamics. I am interested in mining large-scale real-world travel trajectory data to understand human mobility dynamics. This involves the processing and analyzing travel trajectory data, characterizing individual mobility patterns, and evaluating environmental impacts of transportation systems/technologies (e.g., electric vehicles, ride-sharing) based on individual mobility dynamics.
  2. Global supply chains. Increasingly intensified international trade has created a connected global supply chain network. I am interested in understanding the structure of the global supply chain network and economic/environmental performance of nations.
  3. Networked infrastructure systems. Many infrastructure systems (e.g., power grid, water supply infrastructure) are networked systems. I am interested in understanding the basic structural features of these systems and how they relate to the system-level properties (e.g., stability, resilience, sustainability).

A network visualization (force-directed graph) of the 2012 US economy using the industry-by-industry Input-Output Table (15 sectors) provided by BEA. Each node represents a sector. The size of the node represents the economic output of the sector. The size and darkness of links represent the value of exchanges of goods/services between sectors. An interactive version and other data visualizations are available at

Luis E. Ortiz

By |

Luis Ortiz, PhD, is Assistant Professor of Computer and Information Science, College of Engineering and Computer Science, The University of Michigan, Dearborn

The study of large complex systems of structured strategic interaction, such as economic, social, biological, financial, or large computer networks, provides substantial opportunities for fundamental computational and scientific contributions. Luis’ research focuses on problems emerging from the study of systems involving the interaction of a large number of “entities,” which is my way of abstractly and generally capturing individuals, institutions, corporations, biological organisms, or even the individual chemical components of which they are made (e.g., proteins and DNA). Current technology has facilitated the collection and public availability of vasts amounts of data, particularly capturing system behavior at fine levels of granularity. In Luis’ group, they study behavioral data of strategic nature at big data levels. One of their main objectives is to develop computational tools for data science, and in particular learning large-population models from such big sources of behavioral data that we can later use to study, analyze, predict and alter future system behavior at a variety of scales, and thus improve the overall efficiency of real-world complex systems (e.g., the smart grid, social and political networks, independent security and defense systems, and microfinance markets, to name a few).

Vijay Subramanian

By |

Professor Subramanian is interested in a variety of stochastic modeling, decision and control theoretic, and applied probability questions concerned with networks. Examples include analysis of random graphs, analysis of processes like cascades on random graphs, network economics, analysis of e-commerce systems, mean-field games, network games, telecommunication networks, load-balancing in large server farms, and information assimilation, aggregation and flow in networks especially with strategic users.

Pascal Van Hentenryck

By |

Pascal Van Hentenryck’s research is focused on artificial intelligence, data science, and optimization, with applications in mobility and transportation, energy systems, and computational social choice. He is currently leading the RITMO project, partly funded by MIDAS, which focuses on designing novel models of mobility, mathematical and algorithmic approaches to operate them optimally, and software architectures and data-privacy mechanisms to deploy them. The RITMO project is also in the process of deploying its technology in a number of significant case studies, with a particular focus on social equity.

Tracking Shuttle Bus Location & Ridership

Muzammil M. Hussain

By |

Muzammil M. Hussain is an Assistant Professor of Communication Studies, and Faculty Associate in the Institute for Social Research at the University of Michigan. Dr. Hussain’s interdisciplinary research is at the intersections of global communication, comparative politics, and complexity studies. At Michigan, Professor Hussain teaches courses on research methods, digital politics, and global innovation. His published books include “Democracy’s Fourth Wave? Digital Media and the Arab Spring” (Oxford University Press, 2013), a cross-national comparative study of how digital media and information technologies have supported the opening-up of closed societies in the MENA, and “State Power 2.0: Authoritarian Entrenchment and Political Engagement Worldwide” (Ashgate Publishing, 2013), an international collection detailing how governments, both democracies and dictatorships, are working to close-down digital systems and environments around the world. He has authored numerous research articles, book chapters, and industry reports examining global ICT politics, innovation, and policy, including pieces in The Journal of Democracy, The Journal of International Affairs, The Brookings Institutions™ Issues in Technology and Innovation, The InterMedia Institute™s Development Research Series, International Studies Review, International Journal of Middle East Affairs, The Communication Review, Policy and Internet, and Journalism: Theory, Practice, and Criticism. His website is, and he tweets from @m_m_hussain

William Currie

By |

Bill Currie studies how physical, chemical, and ecological processes work together in the functioning of ecosystems such as forests and wetlands.  He studies how human impacts and management alter key ecosystem responses including nutrient retention, carbon storage, plant species interactions, and plant productivity.   Dr. Currie uses computer models of ecosystems, including models in which he leads the development team, to explore ecosystem function across the spectrum from wildland to heavily human-impacted systems.  He often works in collaborative groups where a model is used to provide synthesis.  

He is committed to the idea that researchers must work together across traditional fields to address the complex environmental and sustainability issues of the 21st century.  He collaborates with field ecologists, geographers, remote sensing scientists, hydrologists, and land management professionals.


Raj Rao Nadakuditi

By |

Raj Nadakuditi, PhD, is Associate Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Nadakuditi received his Masters and PhD in Electrical Engineering and Computer Science at MIT as part of the MIT/WHOI Joint Program in Ocean Science and Engineering. His work is at the interface of statistical signal processing and random matrix theory with applications such as sonar, radar, wireless communications and machine learning in mind.

Prof. Nadakuditi particularly enjoys using random matrix theory to address problems that arise in statistical signal processing. An important component of his work is applying it in real-world settings to tease out low-level signals from sensor, oceanographic, financial and econometric time/frequency measurements/time series. In addition to the satisfaction derived from transforming the theory into practice, real-world settings give us insight into how the underlying techniques can be refined and/or made more robust.