Explore ARCExplore ARC

Srijan Sen

By |

Srijan Sen, MD, PhD, is the Frances and Kenneth Eisenberg Professor of Depression and Neurosciences. Dr. Sen’s research focuses on the interactions between genes and the environment and their effect on stress, anxiety, and depression. He also has a particular interest in medical education, and leads a large multi-institution study that uses medical internship as a model of stress.

Danny Forger

By |

Daniel Forger is a Professor in the Department of Mathematics. He is devoted to understanding biological clocks. He uses techniques from many fields, including computer simulation, detailed mathematical modeling and mathematical analysis, to understand biological timekeeping. His research aims to generate predictions that can be experimentally verified.

Brenda Gillespie

By |

Brenda Gillespie, PhD, is Associate Director in Consulting for Statistics, Computing and Analytics Research (CSCAR) with a secondary appointment as Associate Research Professor in the department of Biostatistics in the School of Public Health at the University of Michigan, Ann Arbor. She provides statistical collaboration and support for numerous research projects at the University of Michigan. She teaches Biostatistics courses as well as CSCAR short courses in survival analysis, regression analysis, sample size calculation, generalized linear models, meta-analysis, and statistical ethics. Her major areas of expertise are clinical trials and survival analysis.

Prof. Gillespie’s research interests are in the area of censored data and clinical trials. One research interest concerns the application of categorical regression models to the case of censored survival data. This technique is useful in modeling the hazard function (instead of treating it as a nuisance parameter, as in Cox proportional hazards regression), or in the situation where time-related interactions (i.e., non-proportional hazards) are present. An investigation comparing various categorical modeling strategies is currently in progress.

Another area of interest is the analysis of cross-over trials with censored data. Brenda has developed (with M. Feingold) a set of nonparametric methods for testing and estimation in this setting. Our methods out-perform previous methods in most cases.

Marcelline Harris

By |

Marcelline Harris, Ph.D., R.N., is Associate Professor of Systems, Populations and Leadership in the School of Nursing at the University of Michigan, Ann Arbor.

Dr. Harris’s research interests focus on what is being labeled the “continuous use” of clinical data (the use of clinical data for one or more purposes), computable knowledge representation strategies, and the use of electronic clinical data for practice and research.  Her research has been funded by NIH, AHRQ, RWJF, and PCORI.  Harris also has extensive enterprise level experience, having served in both scientific and operational positions that address the development and governance of systems that support the capture, storage, indexing, and retrieval of clinical data.  At Michigan, she retains this translational perspective, emphasizing clinical data for patient-centered research, clinical surveillance and predictive analytics.

Adriene Beltz

By |

The goal of my research is to leverage network analysis techniques to uncover how the brain mediates sex hormone influences on gendered behavior across the lifespan. Specifically, my data science research concerns the creation and application of person-specific connectivity analyses, such as unified structural equation models, to time series data; these are intensive longitudinal data, including functional neuroimages, daily diaries, and observations. I then use these data science methods to investigate the links between androgens (e.g., testosterone) and estradiol at key developmental periods, such as puberty, and behaviors that typically show sex differences, including aspects of cognition and psychopathology.

A network map showing the directed connections among 25 brain regions of interest in the resting state frontoparietal network for an individual; data were acquired via functional magnetic resonance imaging. Black lines depict connections common across individuals in the sample, gray lines depict connections specific to this individual, solid lines depict contemporaneous connections (occurring in the same volume), and dashed lines depict lagged connections (occurring between volumes).

A network map showing the directed connections among 25 brain regions of interest in the resting state frontoparietal network for an individual; data were acquired via functional magnetic resonance imaging. Black lines depict connections common across individuals in the sample, gray lines depict connections specific to this individual, solid lines depict contemporaneous connections (occurring in the same volume), and dashed lines depict lagged connections (occurring between volumes).

Anna Kratz

By |

Anna Kratz, PhD, is Assistant Professor of Physical Medicine and Rehabilitation and the Center for Clinical Outcomes Development and Application (CODA) at the University of Michigan, Ann Arbor.

Dr. Kratz’s clinical research is focused on the characteristics and mechanisms of common symptoms (e.g. pain, fatigue, cognitive dysfunction) and functional outcomes in those with chronic clinical conditions.  Using a combination of ambulatory measurement methods of physical activity (actigraphy), heart rate variability, galvanic skin response, and self-reported experiences, her research aims to overlay the patient’s day-to-day experience with physiological markers of stress, sleep quality, and physical activity. She utilizes a number of computational approaches, including multilevel statistical modeling, signal processing, and machine learning to analyze these data. The ultimate goal is to use insights from these data to design better clinical interventions to help patients better manage symptoms and optimize functioning and quality of life.

Andrzej T Galecki

By |

Andrzej Galecki, MD, PhD, is Research Professor in the department of Biostatistics, School of Public Health, and Research Professor in the Institute of Gerontology at the University of Michigan, Ann Arbor.

Joseph Himle

By |

Joseph A. Himle, PhD, is the Associate Dean for Research and the Howard V. Brabson Collegiate Professor of Social Work, School of Social Work, and Professor of Psychiatry, Medical School, at the University of Michigan, Ann Arbor.

The goal of Prof. Himle’s research is to design, develop and test a inconspicuous, awareness-enhancement and monitoring device (AEMD) which will assist the treatment of trichotillomania (TTM), a disorder involving recurrent pulling of one’s hair resulting in noticeable hair loss. TTM is associated with significant impairments in social functioning and often has a profound negative impact on self-esteem and well being. Best practice treatment for TTM involves a form of behavioral therapy known as habit reversal therapy (HRT). HRT requires persons with trichotillomania to be aware of their hair pulling behaviors, yet the majority of persons with TTM pull most of their hair outside of their awareness . HRT also requires TTM sufferers to record the frequency and duration of their hair pulling behaviors yet it is obviously impossible for a person to monitor behaviors that they are unaware of. Our Phase I efforts have produced a prototype device (AEMD) that solves these two problems. The prototype AEMD signals the TTM sufferer if their hand approaches their hair, thereby bringing pulling-related behavior into awareness. The prototype AEMD also logs the time, date, duration, and user classification of hair pulling related events and can later transfer the logged data to a personal computer for analysis and data presentation. He continues to refine this device and seek to integrate it with smart-phones to better understand activities and locations associated with hair pulling or other body-focused repetitive behaviors (e.g., skin picking). In the future, he seeks to pool data from users to get a better sense of common situations and other factors associated with elevated pulling rates. He intends to develop other electronic tools to detect, monitor and intervene with other mental disorders in the future.

Xuefeng (Chris) Liu

By |

Dr. Liu has a broad research interest in the development of statistical models and techniques to address critical issues in health and nursing sciences, computational processing of Big Data in clinical Informatics and Genomics, statistical modeling and assessment of risk factors (e.g. hypertension, diabetes, central obesity, smoking) for adverse cardiovascular and renal outcomes and maternal and child health. His expertise in statistics includes, but is not limited to, repeated measures models with missing data, multilevel models, latent variable models, and Bayesian and computational statistics. Dr. Liu has led and co-led several NIH-funded projects on the quality of care for hypertensive patients.